|
|
Key Technologies for DC Micro-Grids |
Wu Weimin1, He Yuanbin1, Geng Pan1, Qian Zhaoming2, Wang Yousheng2 |
1. Shanghai Maritime University Shanghai 200135 China 2. Zhejiang University Hangzhou 310027 China |
|
|
Abstract DC micro-grids, as a self-management grid form of integrating distributed energy systems with utility power systems, will realize the value and benefit of the distributed energy resources efficiently and have a more flexible capability of reconfiguration. However, the barriers of its effective promotion are both the struggling quench of the DC current arc and the lack of common standards and guidelines, leading to a long conversion process mixed with conventional AC technologies and novel DC approaches. This paper presents a comprehensive overview of the current key technologies for DC micro-grid, including control, protection, netting modes, communication, power electronic converters, presenting with a goal of identifying DC micro-grid better. In the end, combined with China's actual power system conditions, it is proposed a tailor-made scheme brought into the residential sub-districts in cities.
|
Received: 29 September 2010
Published: 19 March 2014
|
|
|
|
|
[1] Kakigano H, Miura Y, Ise T, et al. Fundamental characteristics of DC micro-grid for residential houses with cogeneration system in each house[C]. 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008: 1-8. [2] 赵上林, 吴在军, 胡敏强, 等. 关于分布式发电保护与微网保护的思考[J]. 电力系统自动化, 2010, 34(1): 73-77. Zhao Shanglin, Wu Zaijun, Hu Minqiang, et al. Thought about protection of distributed generation and microgrid[J]. Automation of Electric Power Systems, 2010, 34(1): 73-77. [3] 王成山, 杨占刚, 王守相, 等. 微网实验系统结构特征及控制模式分析[J]. 电力系统自动化, 2010, 34(1): 99-105. Wang Chenshan, Yang Zhangang, Wang Shouxiang, et al. Analysis of structural char acteristics and control approaches of experimental microgrid systems[J]. Automation of Electric Power Systems, 2010, 34(1): 99-105. [4] Marnay C, Robio F J, Siddiqui A S. Shape of the micro-grid[C]. IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 2001, 1: 150-153. [5] Barnes M, Ventakaramanan G, Kondoh J, et al. Real- world micro-grids-an overview[C]. IEEE International Conference on System of Systems Engineering, San Antonio, TX, USA, 2007: 1-8. [6] Fred C Lee. Sustainable Buildings and Nanogrids[EB/ OL]. http://www.cpes.vt.edu/publications/proceedings/ conference/2010/index.php, 2010. [7] Mark Mc Granaghan, Thomas Ortmeyer, David Crudele, et al. Renewable systems interconnection study: advanced grid planning and operations[R]. Sandia National Laboratories, 2008. [8] 朱雄世. 国外数据通信设备高压直流供电新系统(下)[J]. 邮电设计技术, 2009(5): 66-70. Zhu Xiongshi. New high voltage direct current power supply system for data communication equipment abroad (part two)[J]. Designing Techniques of Postes and Telecommunication, 2009(5): 66-70. [9] My Ton, Brian Fortenbery. DC Power for Improved Data Center Efficiency [R/OL]. http://hightech. lbl.gov/dc-powering/, 2008. [10] Ciezki J G, Ashton R W. Selection and stability issues associated with a navy shipboard DC zonal electric distribution system[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 665-669. [11] Chun Lien Su, Chun Teng Yeh. Probabilistic security analysis of shipboard DC zonal electrical distribution systems[C]. IEEE Power and Energy Society General Meeting, 2008:1-7. [12] Emadi K, Ehsani M. Aircraft power systems: technology, state of the art, and future trends[J]. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(1): 28-32. [13] Miller J M, Emadi A, Rajarathnam A V, et al. Current status and future trends in more electric car power systems[C]. IEEE Vehicular Technology Conference, Houston, TX, USA, 1999, 2: 1380-1384. [14] 黄逊青. 直流家用电器时代即将来临[J]. 电器, 2009(3): 62-63. [15] 刘衡. 直流家电和家用集成能源系统技术开发项目启动[J]. 家电科技, 2009(16): 8. [16] REbusTM DC Microgrid: Technical Overview [EB/ OL]. http://rebuspower.com/technical.shtml, 2010. [17] El-Samahy I, El-Saadny E. The effect of DG on power quality in a deregulated environment[C]. IEEE Power Engineering Society General Meeting, San Francisco, TX, USA, 2005, 3: 2969-2976. [18] Khatri P R, Jape V S, Lokhande N M, et al. Improving power quality by distributed generation[C]. Power Engineering Conference, IPEC’05, Singapore, 2005, 2: 675-678. [19] Youichi Ito, Yang Zhongqing, Hirofmi Akagi. DC micro-grid based distribution power generation system[C]. Power Electronics and Motion Control Conference, IPEMC’04, 2004, 3: 1740-1745. [20] Kim J W, Choi H S, Cho B H. A novel droop method for the converter parallel operation[C]. 16th Annual IEEE Applied Power Electronics Conference and Exposition, 2001, 2: 959-964. [21] Karlsson P, Svensson J. DC bus voltage control for a distributed power system[J]. IEEE Transactions on Power Electronics, 2003, 18(6): 1405-1412. [22] Kyohei Kurohane, Tomonobu Senjyu, Atsushi Yona, et al. A high quality power supply system with DC smart grid[C]. 2010 IEEE PES Transmission and Distribution Conference and Exposition: Smart Solutions for a Changing World, New Orleans, LA, USA, 2010:1-6. [23] Guerrero J M, Vásquez J C, Matas J, et al. Hierarchical control of droop-controlled DC and AC micro-grids-a general approach toward standardization[J]. IEEE Transaction on Industrial Electronics, 2011, 58(1): 158-172. [24] Dushan Boroyevich, Igor Cvetković, Dong Dong, et al. Future electronic power distribution systems-a contemplative view[C]. The 12th International Conference on Optimization of Electrical and Electronic Equipment, Basov, Russia, 2010: 1369-1380. [25] Schönberger J, Duke R, Simon D Ro. DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1453-1460. [26] Cuzner R M, Venkataramanan G. The status of DC micro-grid protection[C]. IEEE Industry Applications Society Annual Meeting, Edmonton, Alberta, Canada, 2008:1-8. [27] Baran M, Mahajan N R. PEBB based DC system protection: opportunities and challenges[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, PES TD 2005/2006, Dallas, TX, USA, 2006: 705-707. [28] Meyer C, Kowal M, De Doncker R W. Circuit breaker concepts for future high-power DC-applications[C]. IEEE Industry Applications Conference, 40th IAS Annual Meeting, Hong Kong, 2005, 2: 860-866. [29] Peter V G, Ferreira J A. Zero volt switching hybrid DC circuit breakers[C]. 35th IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy, Rome, Italy, 2000, 5: 2923-2927. [30] ABB circuit breakers for direct current applica- tions[EB/OL]. http://www05.abb.com/global/scot/ scot260.nsf/veritydisplay/de4ebee4798b6724852576be007b74d4/$File/1SXU210206G0201.pdf, 2007. [31] Shimizu T, Jin Y, Kimura G. DC ripple current reduction on a single-phase PWM voltage-source rectifier[J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1419-1428. [32] Ruxi Wang, Fred Wang, Dushan Boroyevich, et al. A high power density single phase PWM rectifier with active ripple energy storage[C]. The 25th Annual IEEE Applied Power Electronics Conference and Exposition, Palm Springs, CA, USA, 2010: 1378-1383. [33] Pietro Cairoli, Igor Kondratiev, Roger Dougal. Ground fault protection for DC bus using controlled power sequencing[C]. IEEE SoutheastCon 2010 Conference: Energizing Our Future, Charlotte-Concord, NC, USA, 2010: 234-237. [34] Paul D. DC traction power system grounding[J]. IEEE Transactions on Industry Applications, 2002, 38(3): 818-824. [35] Salomonsson D, Soder L, Sannino A. Protection of low-voltage DC micro-grids[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1045-1053. [36] Mesut E B, Nikhil R M. Overcurrent protection on voltage-source-converter-based multi-terminal DC distribution systems[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 406-412. [37] Lianxiang Tang, Boon-Teck Ooi. Locating and isolating DC faults in multi-terminal DC systems[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1877-1884. [38] Daniel Salomonsson, Lennart Söder, Ambra Sannino. An adaptive control system for a DC micro-grid for data centers[J]. IEEE Transactions on Industry Applications, 2008, 44(6): 1910-1917. [39] Magureanu R, Albu M, Priboianu M, et al. A DC distribution network with alternative sources[C]. 2007 Mediterranean Conference on Control and Automation, MED’07, Athens, Greece, July 2007. [40] Hiroaki Kakigano, Yushi Miura, Toshifumi Ise, et al. DC micro-grid for super high quality distribution- system configuration and control of distributed generations and energy storage devices[C]. The 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, Republic of, 2006:1-6. [41] Guy AlLee. DC—an idea whose time has come and gone?[EB/OL]. http://blogs.intel.com/research/2010/ 05/dc_-_an_idea_whose_time_has_co.php, 2010. [42] 丁明, 张颖媛, 茆美琴. 微网研究中的关键技术[J]. 电网技术, 2009, 33(11): 6-11. Ding Ming, Zhang Yinyuan, Mao Meiqin. Key technologies for microgrids being researched[J]. Power System Technology, 2009, 33(11): 6-11. [43] Kroposki B, Lasseter R, Ise T, et al. Making micro-grids work[J]. IEEE Power and Energy Magazine, 2008, 6(3): 40-53. [44] Katiraei F, Iravani R, Hatziargyriou N, et al. Micro-grids management[J]. IEEE Power and Energy Magazine, 2008, 6(3): 54-65. [45] Kakigano H, Miura Y, Ise T, et al. DC voltage control of the DC micro-grid for super high quality distribution[C]. The 4th Power Conversion Conference, Nagoya, Japan, 2007: 518-525. [46] Biczel P. Power electronic converters in DC micro-grid[C]. The 5th International Conference- Workshop Compatibility in Power Electronics, CPE’07, Gdansk, Poland, May/Jun. 2007: 1-6. [47] Daniel Salomonsson, Ambra Sannino. Centralized AC/DC power conversion for electronic loads in a low-voltage DC power system[C]. The 37th IEEE Power Electronics Specialists Conference, PESC’06. Jeju, Korea, Republic of, June 2006: 1-7. |
|
|
|