|
|
Research on Engineering Analytical Model of Solar Cells |
Fu Wang, Zhou Lin, Guo Ke, Liu Qiang, Dai Lu, Huang Yong |
State key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China |
|
|
Abstract As the output characteristic curve of photovoltaic (PV) cell is the theoretical basis of PV Power. This paper starts from studying the similarity between the output characteristic curve of PV cell and the trajectories of the horizontal projectile motion. Also based on the original project index model of PV cell, this paper first proposes a new engineering mathematical model which is easier to calculate in practice. The characteristic of the new model is that it attempt to indirectly analyze the trajectories of the horizontal projectile motion under three different gravity g0, g1 and g2 instead of directly analyzing the output characteristic curve of PV cell. Using the horizontal projectile motion formula to carry out the conversion formula of output characteristic curve of PV cell, then through adjusting the demarcation points of g0 and g1, to make the error near the maximum power point(MPP), under varying environmental conditions, as small as possible. By comparing the measured data, it shows this model can meet the engineering requirement. What’s more, this new model reduces the computational complexity and improves the operation speed comparing with the original project index model.
|
Received: 14 May 2010
Published: 07 March 2014
|
|
|
|
|
[1] Azzopardi B, Mutale J, Kirschen D, et al. Cost boundaries for future PV solar cell modules sustainable energy technologies[C]. Proceedings of the IEEE Internation Conference on Sustainable Energy Technologies, 2008, 24(3): 589-594. [2] Yazdani A, Dash P P. A control methodology and characterization of dynamics for a photovoltaic system interfaced with a distribution network[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1538-1551. [3] Rauschenbach H S. Solar cell array design handbook[M]. Litton Educational Publishing Inc, USA, 1980. [4] 赵福鑫, 魏彦章. 太阳电池及其应用[M]. 北京: 国防工业出版社, 1985. [5] 江小涛, 吴麟章, 王元, 等. 硅太阳电池数学模型[J]. 武汉科技学院学报, 2005, 18(8): 5-8. Jiang Xiaotao, Wu Linzhang, Wang Yuan, et al. Mathematical model of silicon solar cells[J]. Journal of Wuhan University of Science and Engineering, 2005, 18(8): 5-8. [6] 徐鹏微, 杜珂, 刘飞, 等. 光伏电池阵列模拟器研究[J]. 通讯电源技术, 2006, 23(5): 5-8. Xu Pengwei, Du Ke, Liu Fei, et al. Research on PV array simulator[J]. Telecom Power Technologies, 2006, 23(5): 5-8. [7] 苏建徽, 余世杰, 赵为, 等, 硅太阳能电池工程用数学模型[J]. 太阳能学报, 2001(22): 409-412. Su Jianhui, Yu Shijie, Zhao Wei, et al. Silicon solar cell engineering model[J]. Acta Energiae Solaris Sinica, 2001(22): 409-412. [8] Singer S, Bozenshtein B, Surazi S. Characterization of PV array output using a small number of measured parameters[J]. Solar Energy, 1984, 32(5): 603-607. [9] Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973. [10] Shmilovitz D. On the control of photovoltaic maximum power point tracker via output parameters[J]. IEE Proceedings of Electric Power Applications, 2005, 152(2): 239-248. [11] 黄道平. MATLAB与控制系统的数字仿真及CAD[M]. 北京: 化学工业出版社, 2004. [12] Britton, Lunscher, Tanju. A 9 kW high-peformance solar array simulator[C]. Proceedings of the European Space Power Conference, 1993: 409-412. [13] 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2004. [14] 李庆杨, 王能超, 等, 数值分析[M]. 北京: 清华大学出版社, 2008. |
|
|
|