|
|
Scheme of Variable Universe Fuzzy Sliding Mode Adaptive and PID Hybrid Controller for Maglev Vehicle |
Liu Hexiang1,Hu Minqiang1,Yu Haitao1,Yu Li2 |
1. Southeast University Nanjing 210096 China 2.Nanjing University of Information Science and Technology Nanjing 210044 China |
|
|
Abstract This paper established mathematical model of the static maglev vehicle,by using kinetic energy equation and Lagrange equation firstly. Aiming at strong nonlinear,time-varying control problem of suspended vehicle,an adaptive variable universe fuzzy sliding mode and PID hybrid controller was proposed. With the expandable and shrinkable factor of the fuzzy and sliding mode conditions,the adaptive law was derived based on Lyapunov stability conditions of the control strategy. In order to eliminate the chattering in sliding-mode and achieve a smooth transition,the supervisory controller was designed correspondingly. Finally simulation and experimental analysis had been done,the results show the validity of the given control strategy.
|
Received: 10 September 2012
Published: 11 December 2013
|
|
|
|
|
[1] Ahmad A K, Saad Z, Osman M K, et al. Control of magnetic levitation system using fuzzy logic control[C]. Modelling and Simulation(CIMSiM), Second International Conference on Computational Intelligence, 2010: 51-56. [2] Hossain A, Rahman A, Mohiuddin A K M. Fuzzy expert system for controlling swamp terrain intelligent air-cushion tracked vehicle[J]. International Journal of Automotive Technology, 2011, 12(5): 745-753. [3] Wu Huachun, Hu Yefa. Study on fuzzy control algorithm for magnetic levitated platform[C]. International Conference on Measuring Technology and Mechatronics Automation, 2009, 2: 598-601. [4] Xu Zhengguo, Liu Yuhong, Wang Juan, et al. Fuzzy logic based control strategy for hybrid-magnets used in maglev systems[J]. Transactions of China Electrotechnical Society, 2006, 21(10): 76-80. [5] Chen Syuan Yi, Lin Faa Jeng. Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 636-643. [6] Li Hua, Wang Bo, Zhou Shunyuan. Sliding mode control based on fuzzy approaching law of hybrid suspension system[C]. Proceedings of the 8th World Congress on Intelligent Control and Automation, 2010: 3712-3715. [7] 段吉安, 陆新江, 李群明. 电磁悬浮平台系统的滑模控制研究[J]. 系统仿真学报, 2005, 17(8): 1966- 1969. Duan Jian, Lu Xinjiang, Li Qunming. Research on sliding mode control for electromagnetic suspension platform[J]. Journal of System Simulation, 2005, 17(8): 1966-1969. [8] Molero R, Roca J, Separovich D, et al. Nonlinear control of an electromagnetic system based on exact linearization and sliding mode control[J]. Mechanics Based Design of Structures and Machines, 2008, 36(4): 426-445. [9] Duan Min, Li Gang, Shi Jing. Research on the adaptive fuzzy control based on variable universe of with magneto-rheological suspension[J]. Materials Science and Information Technology, 2012, 433-440: 7112-7118. [10] 徐正国, 徐绍辉, 史黎明, 等. 电磁型混合磁极直接自适应模糊悬浮控制方案的研究[J]. 中国电机工程学报, 2005, 25(18): 157-161. Xu Zhengguo, Xu Shaohui, Shi Liming, et al. Study on direct fuzzyadaptive control for hybrid magnets used on ems maglev systems[J]. Proceedings of the CSEE, 2005, 25(18): 157-161. [11] Pan Yongping, Er Meng Joo, Huang Daoping. Adaptive fuzzy control with guaranteed convergence of optimal approximation error[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(5): 807-818. [12] Lin Faa Jeng, Chen Syuan Yi, Huang Ming Shi. Adaptive complementary sliding-mode control for thrust active magnetic bearing system[J]. Control Engineering Practice, 2011, 19(7): 711-722. [13] Chen H Y, Huang S J. Adaptive sliding controller for active suspension system[C]. 5th International Conference on Control and Automation, 2005, 1-2: 282-287. [14] Chen P C, Huang A C. Adaptive sliding control of active suspension systems with uncertain hydraulic actuator dynamics[J]. Vehicle System Dynamics, 2006, 44(5): 357-368. [15] Li H, Yu J, Hilton C, et al. Adaptive sliding mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach[J]. IEEE Transactions on Industrial Electronics, 2012, 60(8): 3328-3338. [16] Hsueh Yao Chu, Su Shun Feng. Adaptive fuzzy sliding controller design with approximate error feedback[J]. International Journal of Fuzzy Systems, 2009, 11(1): 36-43. [17] Ruey Jing Lian. Enhanced adaptive self-organizing fuzzy sliding-mode controller for active suspension systems[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 1-11. [18] 马忠宝, 孙荣斌. 磁悬浮列车电磁悬浮系统的自适应模糊滑模控制[J]. 机车电传动, 2007, 1(10): 29-32. Ma Zhongbao, Sun Rongbin. Adaptive fuzzy sliding mode control for electromagnetic suspension system of maglev train[J]. Electric Drive for Locomotives, 2007, 1(10): 29-32. [19] 郭庆鼎, 刘德君, 赵希梅. 基于输入解耦的6DOF磁悬浮平台悬浮高度的H_#x0221e;控制[J]. 电工技术学报, 2005, 20(11): 70-74. Guo Qingding, Liu Dejun, Zhao Ximei. H_#x0221e; control of 6DOF magnetic suspension planar stage suspension height based on input decoupling[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 70-74. [20] 胡汉辉, 谭青. 磁悬浮平台的解耦模糊PID控制[J]. 中南大学学报(自然科学版), 2009, 40(4): 963-968. Hu Hanhui, Tan Qing. Decoupling fuzzy PID control for magnetic suspended table[J]. Journal of Central South University(Science and Technology), 2009, 40(4): 963-968. [21] Qunming Li, Liang Wan, Ling Zhu, et al. Decoupling control for a magnetic suspension stage[C]. IEEE International Conference on Control and Automation, 2007: 323-328. [22] 李奇南, 徐德鸿. 四电磁铁支撑钢板磁悬浮系统气隙交叉耦合控制[J]. 中国电机工程学报, 2010, 30(33): 129-134. Li Qinan, Xu Dehong. Gap cross-coupling control for 4-electromagnet supported steel plate magnetic suspension system[J]. Proceedings of the CSEE, 2010, 30(33): 129-134. |
|
|
|