|
|
Study of the Simple Formula of DC Surface Potential in AC-DC Interconnected Large Power System |
Ren Zhichao1, Xu Jianguo1, 2, Zhang Yikun1, Zhen Wei3, Wu Guangning1 |
1. Southwest Jiaotong University Chengdu 610031 China 2. Shanxi Electric Power Research Institue Taiyuan 030001 China 3. Sichuan Electric Power Research Institue Chengdu 610072 China |
|
|
Abstract DC magnetic bias, caused by the current from the DC grounding electrode, threatens the safety of AC grid. At first, a simple and easy-to-use formula for calculating the DC surface potential was presented, which was based on typical three-layer soil structure. Secondly, in the verification, measured value of DC current of transformer neutral point was applied to decide the coefficient of the formula by editing nodal equation. Comparison of the calculated, simulation and measured value demonstrates high accuracy of the formula. Finally, DC current distribution in substations caused by DC grounding electrode was evaluated by predicting DC surface potential and step voltage in a HVDC with the formula mentioned above. Several substations were pointed out to take protective measures.
|
Received: 09 March 2010
Published: 07 March 2014
|
|
|
|
|
[1] Villas J E T, Portela C M. Calculation of electric field and potential distributions into soil and air media for a ground electrode of a HVDC system[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 867-873.
[2] Kovarsky D, Pinto L J, Caroli C E, et al. Soil surface potentials induced by ITAIPU HVDC ground return current part I-theoretical evaluation[J]. IEEE Transactions on Power Delivery, 1988, 3(3): 1204-1210.
[3] Zhang Bo, Cui Xiang, Zeng Rong, et al. Calculation of DC current distribution in AC power system near HVDC system by using moment method coupled to circuit equations[J]. IEEE Transactions on Magnetics, 2006, 42(4): 703-706.
[4] Zhang Bo Zhao Jie, Zeng Rong, et al. Numerical analysis of DC current distribution in AC power system near HVDC system[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 960-965.
[5] 郭剑, 邹军, 何金良, 等. 水平分层土壤中点电流源格林函数的递推算法[J]. 中国电机工程学报, 2004, 24(7): 101-105.
[6] 孙结中, 刘力. 运用等值复数镜像法求解复合分层土壤结构的格林函数[J]. 中国电机工程学报, 2003, 23(9): 143-151.
[7] Ma J, Dawalibi F P. Analysis of grounding systems in soils with cylindrical volumes[J]. IEEE Transactions on Power Delivery, 2002, 17(3): 913-918.
[8] 陆继明, 肖冬, 毛承雄, 等. 直流输电接地极对地表电位分布的影响[J]. 高电压技术, 2006, 32(9): 55-58, 91.
[9] 赵小军, 李琳, 程志光, 等. 基于直流偏磁实验的叠片铁心磁化特性分析[J]. 电工技术学报, 2011, 26(1): 7-13.
[10] 李晓萍, 文习山, 蓝磊, 等. 单相变压器直流偏磁试验与仿真[J]. 中国电机工程学报, 2007, 27(9): 33-40.
[11] 李泓志, 崔翔, 刘东升, 等. 直流偏磁对三相电力变压器的影响[J]. 电工技术学报, 2010, 25(5): 88-96.
[12] 郭满生, 梅桂华, 刘东升, 等. 直流偏磁条件下电力变压器铁心B-H曲线及非对称励磁电流[J]. 电工技术学报, 2009, 24(5): 46-51, 59.
[13] Fuchs E F, You Y, Roesler D J. Modeling and simulation, and their validation of three-phase transformers with three legs under DC bias[J]. IEEE Transaction on Power Delivery, 1999, 14(2): 443-449.
[14] Ruan W, Ma J, liu J, et al. Performance of HVDC Ground electrode in various soil structures[C]. Power System Technology, Proceedings of PowerCon 2002, International Conference, 2002, 2: 962-968.
[15] 蒋伟, 黄震, 胡灿, 等. 变压器接小电阻抑制直流偏磁的网络优化配置[J]. 中国电机工程学报, 2009, 29(16): 89-94.
[16] 尚春. HVDC地中电流对交流变压器影响的抑制措施[J]. 高电压技术, 2004, 30(11): 52-54.
[17] 蒯狄正, 万达, 邹云. 直流输电地中电流对电网设备影响的分析与处理[J]. 电力系统自动化, 2005, 29(2): 81-82.
[18] 苑舜, 王天施. 电力变压器直流偏磁研究综述[J]. 高压电器, 2010, 46(3): 83-87.
[19] 迟兴和, 张玉军. 直流接地极与大地中金属管道的防护距离[J]. 电网技术, 2008, 32(2): 71-74, 84.
[20] 滕吉文. 固体地球物理学概论[M]. 北京: 地震出版社, 2003.
[21] 解广润. 电力系统接地技术[M]. 北京: 中国电力出版社, 1991.
[22] 郭玉翠. 数学物理方法[M]. 北京: 清华大学出版社, 2006.
[23] 何金良, 曾嵘. 电力系统接地技术[M]. 北京: 科学出版社, 2007.
[24] 雷祥义. 黄土高原地质灾害与人类活动[M]. 北京: 地质出版社, 2001.
[25] SDJ8—79电力设备接地设计技术规程[S]. 北京: 水利电力出版社, 1979. |
|
|
|