|
|
Hybrid Wavelet-Energy Operator Method for Voltage Sag Detection |
Lu Boyong1, Huang wenqing2 |
1. Hunan Mechanical & Electrical Polytechnic Changsha 410151 China 2. Hunan University Changsha 410082 China |
|
|
Abstract This paper proposes a novel hybrid wavelet-energy operator method for accurate voltage sag detection and measurement. In the proposed method, the voltage sag is decomposed into two signal parts by wavelet transform: one is a detail signal, the other is an approximation signal. And in the detail signal, the start time and the end time of the sag signal can be detected. By applying an energy operator to the approximation signal, the temporary sag decline in value can be measured accurately and quickly. At the same time, the wavelet transform (WT) in this method acts like a filter. WT can weaken or remove the high frequency disturbance from voltage sag to enhance the noise immunity and accuracy of the energy operator. Simulation and experimental results verify the effectiveness of the algorithm.
|
Received: 04 January 2011
Published: 07 March 2014
|
|
|
|
|
[1] Gencer Ö, Öztürk S, Erfidan T. A new approach to voltage sag detection based on wavelet transform[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(2): 133-140. [2] 张庆超, 肖玉龙. 一种改进的电压暂降检测方法[J]. 电工技术学报, 2006, 21(2): 124-126. [3] Bollen M. Characterisation of voltage sags experienced by three-phase adjustable-speed drives[J]. IEEE Transactions on Power Delivery, 2002, 12(4): 1666- 1671. [4] 林海雪. 电力系统中电压暂降和短时断电[J]. 供用电, 2002, 19(1): 9-13. [5] 李承, 杨博, 邹云屏, 等. 基于反馈神经网络的电压暂降特征量实时检测方法[J]. 电机与控制学报, 2010, 14(9): 19-25. [6] 杨淑英, 杜彬. 基于dq变换的动态电压恢复器综合求导检测算法[J]. 电力系统自动化, 2008, 32(2): 40-44. [7] Bollen M. Understanding power quality problems: voltage sags and interruptions[M]. New York: Wiley-IEEE Press, 2000. [8] 赵凤展, 杨仁刚. 基于短时傅里叶变换的电压暂降扰动检测[J]. 中国电机工程学报, 2007, 27(10): 28-34. [9] 周林, 吴红春, 孟婧. 电压暂降分析方法研究[J]. 高电压技术, 2008, 34(5): 1010-1016. [10] 黄文清, 戴瑜兴. 基于Teager能量算子的电能质量扰动实时检测方法[J]. 电工技术学报, 2007, 22(6): 154-158. [11] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. [12] Maragos P, Kaiser J, Quatieri T. Energy separation in signal modulations with application to speech analysis[J]. IEEE Transactions on Signal Processing, 2002, 41(10): 3024-3051. |
|
|
|