|
|
Parallel GMRES Techniques for Solving Newton Power Flow of Large Scale Power Systems on the Beowulf Cluster |
Hu Bo, Xie Kaigui, Cao Kan |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract Considering the characteristics of the coefficient matrix of Newton power flow equations for a large scale power system, such as high dimension, sparse and unsymmetrical, a parallel solving method of Newton power flow equations using a preconditioned generalized-minimal-residual (GMRES) method is presented. Based on the structural characteristics of block-Jacobi preconditioners matrix and the number of parallel processors, a preconditioner for the parallel computing process for power flow, which is designed as a quasi-diagonal parallel preconditioner matrix is proposed. A parallel computing method for the iterative corrections of Jacobi matrix based on the parallel matrix-vector operational method by performing the vectorization process of Jacobi matrix is also proposed in this paper. Case studies of 7 680 and 12 000 buses power system and other power systems are done. The results indicate that the proposed parallel power flow calculating method has an obvious superiority compared with the traditional parallel method based on the LU factorization method for large scale power systems.
|
Received: 02 November 2009
Published: 07 March 2014
|
|
|
|
|
[1] 薛巍, 舒继武, 王新丰, 等. 电力系统潮流并行计算的研究进展[J]. 清华大学学报(自然科学版), 2002, 42(9): 1192-1195. [2] 黄彦全, 肖建, 刘兰, 等. 基于支路切割方法的电力系统潮流并行协调算法[J]. 电网技术, 2006, 30(4): 21-25. [3] 刘洋, 周家启, 谢开贵, 等. 基于Beowulf集群的大规模电力系统方程并行PCG求解[J]. 电工技术学报, 2006, 21(3): 105-111. [4] Tu F, Flueck A J. A message-passing distributed- memory parallel power flow algorithm[C]. Power Engineering Society Winter Meeting, USA, New York, 2002, 1: 211-216. [5] 陈国良, 安虹, 等. 并行算法实践[M]. 北京:高等教育出版社, 2004. [6] 陈国良. 并行算法——结构·算法·编程[M]. 北京:高等教育出版社, 2004. [7] (美)M J Quinn. MPI与OpenMP并行程序设计——C语言版[M]. 陈文光, 武永卫, 等译. 北京:清华大学出版社, 2004. [8] 蔡大用, 陈玉荣. 用不完全LU分解预处理的不精确潮流计算方法[J]. 电力系统自动化, 2002, 4(25): 11-14. [9] (美)G H 戈卢布, C F 范洛恩. 矩阵计算[M]. 袁亚湘, 等译. 北京:科学出版社, 2004. [10] Saad Y, Vorst H A. Iterative solution of linear systems in the 20th century[J]. Journal of Computational and Applied Mathematics, 2000, 123(1-2): 1-33. [11] 胡博, 周家启, 刘洋, 等. 基于预条件处理GMRES的不精确牛顿法潮流计算[J]. 电工技术学报, 2007, 22(2): 98-104. [12] 吴建平, 王正华, 李晓梅. 稀疏线性方程组的高效求解与并行计算[M]. 长沙:湖南科学技术出版社, 2004. [13] Flueck A J, Chiang H. Solving the nonlinear power flow equations with an inexact Newton method using GMRES[J]. IEEE Transactions on Power Systems, 1998, 13(2): 267-273. [14] F de Leon, Semlyen A. Iterative solvers in the Newton power flow problem: preconditioners, inexact solutions and partial Jacobian updates[J]. IEE Proceedings—Generation, Transmission and Distribution, 2002, 149(4): 479-484. [15] Chen Y, Shen C. A Jacobian-free Newton-GMRES(m) method with adaptive preconditioner and its application for power flow calculations[J]. IEEE Transactions on Power Systems, 2006, 21(3): 1096-1103. [16] 张伯明, 陈寿孙, 严正. 高等电力网络分析[M]. 北京:清华大学出版社, 2007. [17] Semlyen A, F de Leon. Quasi-Newton power flow using partial Jacobian updates[J]. IEEE Transactions on Power Systems, 2001, 16(3): 332-339. |
|
|
|