|
|
A Novel Decoupling Regulator for Electrically Excited Synchronous Motors |
Yuan Qingqing, Fu Xiao, Wu Xiaojie, Dai Peng |
China University of Mining and Technical Xuzhou 221008 China |
|
|
Abstract The conventional proportional plus integral (PI) regulators control the current components #em/em#m and #em/em#t at synchronous coordinate. When the controlled system has multiple inputs and outputs, especially there has intense cross-coupling between the variables, this kind of regulator could not meet the system requirements. Being added a forward feedback decoupling may improve the performance. A novel current regulator with complex state variables for electrically excited synchronous motors is proposed based on the zero-pole diagram. Simulation results show that this kind of current controller with complex state variables can realize decoupling between #em/em#m and #em/em#t as well as the perfect dynamic and steady response.
|
Received: 01 November 2010
Published: 07 March 2014
|
|
|
|
|
[1] 周志刚. 一种感应电机的解耦控制方法[J]. 中国电机工程学报, 2003, 23(2): 121-125. Zhou Zhigang. A induction motor de-coupling control method [J]. Proceeding of the CSEE 2003, 23(2): 121-125. [2] Jung J. A Dynamic Decoupling Control Scheme for High-Speed Operation of induction Motors[J]. IEEE Transaction, 1999, 46(1). [3] 周渊深, 姜建国. 异步电动机的动态解耦控制[J].中小型电机, 2001(2):22-26. Zhou Yuanshen, Jiang Jianguo.Dynamic decoupling control for asynchronous motor[J]. Small and Medium Electric Motor, 2001(2): 22-26. [4] 马小亮. 高性能变频调速及其典型控制系统[M]. 北京: 机械工业出版社, 2010. [5] 马小亮. 大功率交—交变频调速及矢量控制技术[M]. 北京:机械工业出版社, 1997. [6] 马小亮. 概述低开关频率PWM变频的问题及解决办法[J]. 电气传动, 2009: 39(5): 3-9. [7] Fernando B B, Michael W D, Robert D L. Dynamic analysis of current regulators for AC motors using complex vectors [J]. IEEE Transactions on Industry Applications, 1999, 35(9): 1424-1432. [8] Kovac P K, Racz I. Transient phenomena in eletrical machine [J]. Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1959. [9] 李崇坚.交流同步电机调速系统[M].北京, 科学出版社, 2006. [10] Holtz J. The representation of AC machine dynamics by complex signal flow graphs [J]. IEEE Transactions on Industrial Electronics, 1995, 42(3): 263-271. [11] Joachim Holtz, Nikolaos Oikonomou. Estimation of the fundamental current in low-switching-frequency high dynamic medium-voltage drives[J]. IEEE Transactions on Industry Applications, 2008, 44(5): 1597-1605. [12] Jinsheng Jiang, Joachim Holtz. High dynamic speed sensorless AC drive with on-line model parameter tuning for steady-state accuracy [J]. IEEE Transactions on Industrial Electronics, 1997, 44(2): 240-246. [13] Holtz J. On the spatial propagation of transient magnetic fields in AC machines [J]. IEEE Transactions on Industrial Electronics, 1996, 32(4): 927-937. [14] Joachim Holtz, Jose Rodriguez, Patricio Newman, et al. Design of fast and robust current regulators for high-power drives based on complex state variables [J]. IEEE Transactions on Industry Applications, 2004, 40(5): 1388-1397. [15] Rolando P Burgos, Eduardo P Wiechmann, et al. Complex state variables modeling and nonlinear control of PWM voltage and currentsource rectifiers [C]. 28th Annual Conference of the IEEE Industrial Electronics Society, 2002: 187-192. [16] Oikonmou N. Control of medium-voltage drives at very low switching frequency [M]. Wuppertal: Logos Verlag, 2008. |
|
|
|