| [1] 洪芦诚,王梓萩,林今,等.电-碳-绿证市场背景下电氢协同典型形态及参与模式研究综述[J].电工技术学报,doi:10.19595/j.cnki.1000-6753.tces.241914.
Hong Lucheng, Wang Ziqiu, Lin Jin, et al.A review of typical forms and participation models of electricity hydrogen synergy in the context of electricity-carbon-green certificate markets[J]. Transactions of China Electrotechnical Society, DOI:10.19595/j.cnki.1000-6753.tces.241914.
[2] 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(03): 446-462.
Li Zheng, Zhang Rui, Sun Hexu, et al.Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(03): 446-462.
[3] Wang Jingbo, Wen Jianfeng, Wang Jiarong, et al.Water electrolyzer operation scheduling for green hydrogen production: A review[J]. Renewable and Sustainable Energy Reviews, 2024, 203: 114779.
[4] Trinke P, Haug P, Brauns J, et al.Hydrogen crossover in PEM and alkaline water electrolysis: mechanisms, direct comparison and mitigation strategies[J]. Journal of The Electrochemical Society, 2018, 165(7): F502-F513.
[5] 刘元,肖碧涛,卢昂,等.面向波动可再生能源的质子交换膜电制氢系统最优压强运行[J].电力自动化设备, 2024, 44(08): 210-217.
Liu Yuan, Xiao Bitao, Lu Ang, et al.Optimal pressure operation of proton exchange membrane water electrolysis system for fluctuating renewable energy[J]. Electric Power Automation Equipment. 2024, 44(08): 210-217.
[6] Ding Shunliang, Tian Zeke, Hu Song, et al.Study on multi-power-level configuration scheme and scheduling strategy for multi-stack alkaline water electrolysis system in off-grid wind power scenario[J]. Energy Conversion and Management, 2024, 314: 118714.
[7] Zheng Yi, You Shi, Bindner H W, et al.Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal-electric properties and state-transitional dynamics[J]. Applied Energy, 2022, 307: 118091.
[8] Ursúa A, Martín I S, Barrios L.E, et al. Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14952-14967.
[9] 江悦,沈小军,吕洪,等.碱性电解槽运行特性数字孪生模型构建及仿真[J].电工技术学报, 2022, 37(11): 2897-2908.
Jiang Yue, Shen Xiaojun, Lü Hong, et al.Construction and simulation of operation digital twin model for alkaline water electrolyzer[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2897-2908.
[10] Villagra A, Millet P.An analysis of PEM water electrolysis cells operating at elevated current densities[J]. International Journal of Hydrogen Energy, 2019, 44(20): 9708-9717.
[11] Hu Kewei, Fang Jiakun, Ai Xiaomeng, et al.Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling[J]. Applied Energy, 2022, 312: 118788.
[12] Schalenbach M, Lueke W, Stolten D.Hydrogen diffusivity and electrolyte permeability of the Zirfon PERL separator for alkaline water electrolysis[J]. Journal of the Electrochemical Society, 2016, 163(14): F1480.
[13] Groot M T d, Kraakman J, Barros R L G. Optimal operating parameters for advanced alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2022, 47(82): 34773-34783.
[14] Zhang Tao, Song Lingjun, Yang Fuyuan, et al.Research on oxygen purity based on industrial scale alkaline water electrolysis system with 50Nm3 H2/h[J]. Applied Energy, 2024; 360: 122852.
[15] Sakas G, Ibáñez-Rioja A, Ruuskanen V, et al.Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process[J]. International Journal of Hydrogen Energy, 2022; 47(7): 4328-4345.
[16] Qi Ruomei, Gao Xiaoping, Lin Jin, et al.Pressure control strategy to extend the loading range of an alkaline electrolysis system[J]. International Journal of Hydrogen Energy,2021, 46(73): 35997-36011.
[17] Hu Song, Guo Bin, Ding Shunliang, et al.Study on the synergistic regulation strategy of load range and electrolysis efficiency of 250 kW alkaline electrolysis system under high-dynamic operation conditions[J]. eTransportation, 2024, 19: 100304.
[18] Li Yangyang, Zhang Tao, Deng Xintao et al. Active pressure and flow rate control of alkaline water electrolyzer based on wind power prediction and 100% energy utilization in off-grid wind-hydrogen coupling system[J]. Applied Energy, 2022; 328: 120172.
[19] Zhou, Yujie, Zhang Hao, Liu Leixin, et al. Effect of electrolyte circulation on hydrogen-in-oxygen in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024; 82: 143-149.
[20] Sánchez M, Amores E, Rodríguez L, et al.Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy,2018, 43(45): 20332-20345.
[21] Ding Shunliang, Guo Bin, Hu Song, et al.Analysis of the effect of characteristic parameters and operating conditions on exergy efficiency of alkaline water electrolyzer[J]. Journal of Power Sources, 2022, 537: 231532.
[22] 韩鹏飞,徐潇源,王晗,等.基于功率-温度自适应控制的多堆质子交换膜电解制氢系统效率优化[J].电工技术学报,2024,39(07):2236-2248.
Han Pengfei, Xu Xiaoyuan, Wang Han, et al.Operational efficiency enhancement of multi-stack proton exchange membrane electrolyzer systems with power-temperature adaptive control[J]. Transactions of China Electrotechnical Society, ,2024,39(07):2236-2248.
[23] Ding Shunliang, Guo Bin, Hu Song, et al.Experimental and modeling study on energy flow of 250 kW alkaline water electrolysis system under steady state conditions and cold start process[J]. Fuel, 2023, 350: 128799.
[24] 任洲洋,王皓,李文沅,等.基于氢能设备多状态模型的电氢区域综合能源系统可靠性评估[J].电工技术学报,2023,38(24):6744-6759.
Ren Zhouyang, Wang Hao, Li Wenyuan, et al.Reliability evaluation of electricity-hydrogen regional integrated energy systems based on the multi-State models of hydrogen energy equipment[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6744-6759.
[25] 李军舟,赵晋斌,陈逸文,等.考虑动态功率区间和制氢效率的电转氢(P2H)设备容量配置优化[J].电工技术学报, 2023,38(18):4864-4874+4920.
Li Junzhou, Zhao Jinbin, Chen Yiwen, et al.Optimal capacity configuration of P2H equipment considering dynamic power range and hydrogen production efficiency[J]. Transactions of China Electrotechnical Society, 2023, 38(18):4864-4874. |