| [1] 陈冲,贾利民,赵天宇,等.去碳化导向的轨道交通与新能源融合发展——形态模式、解决方案和使/赋能技术[J].电工技术学报,2023,38(12):3321-3337.
Chen Chong, Jia Limin, Zhao Tianyu, et al.Decarbonization-oriented rail transportation and renewable energy integration development-configurations, solutions, and enabling/empowering technologies[J]. Diangong Jishu Xuebao, 2023, 38(12): 3321-3337.
[2] 陈艳波,刘宇翔,田昊欣,等.基于广义目标级联法的多牵引变电站光伏-储能协同规划配置[J].电工技术学报,2024,39(15):4599-4612.
Chen Yanbo, Liu Yuxiang, Tian Haoxin, et al.Collaborative Planning and Configuration of Photovoltaic and Energy Storage in Multiple Traction Substations Based on Generalized Analytical Target Cascading Method[J]. Diangong Jishu Xuebao, 2024,39(15):4599-4612.
[3] Li Junhao, Guo Qi Wang Xin, et al. Parallel-Execute-Based Real-time Energy Management Strategy for FTPSS integrated PV and ESS[J]. Applied Energy 2025; 385(May).
[4] 李欣,朱成琨.碳视角下基于网-车-线耦合的高速列车节能运行优化[J/OL].电工技术学报,1-18.
Li Xin, Zhu Chengkun.Energy-efficient operation optimization of high-speed trains based on network-train-line coupling under carbon perspective [J/OL]. Diangong Jishu Xuebao, 1-18.
[5] 陈冲,贾利民,赵天宇,等.光伏和储能植入铁路牵引供电系统的拓扑架构与控制策略研究综述[J].电工技术学报,2024,39(24):7874-7901.
Chen Chong, Jia Limin, Zhao Tianyu, et al.Research review on topology and control strategy of pV and energy storage connected to railway traction power supply systems[J]. Diangong Jishu Xuebao, 2024,39(24):7874-7901.
[6] 李欣,马学东,赵天阳.考虑再生制动能量不确定性的光储两相接入牵引供电系统能量优化调度[J/OL].高电压技术,1-13[2025-07-10].
Li Xin, Ma Xuedong, Zhao Tianyang.Energy optimization scheduling of photovoltaic-storage two-phase integrated traction power supply system considering the uncertainty of regenerative braking energy[J/OL]. High Voltage Engineering, 1-13[2025-07-10].
[7] Kano N, Tian Z, Chinomi N, et al.Renewable Sources and Energy Storage Optimization to Minimize the Global Costs of Railways[J]. IEEE Transactions on Vehicular Technology, 2023; 1-11.
[8] Ying Yichen, Tian Zhongbei, Wu Mingli, et al.Capacity Configuration Method of Flexible Smart Traction Power Supply System Based on Double-Layer Optimization[J]. IEEE Transactions on Transportation Electrification, 2023; 9(3): 4571-4582.
[9] Yang Ruizhang, Li Yujia, Xiao Zhuang, et al.Coordinative Operating Strategy of Grid-Interactive FTPSS-HST for Cost-Efficient Operation[J]. IEEE Transactions on Smart Grid, 2025; 16(1): 146-163.
[10] Chen Minwu, Gong Xin, Liang Zongyou, et al.Bi-hierarchy capacity programming of co-phase TPSS with PV and HESS for minimum life cycle cost[J]. International Journal of Electrical Power & Energy Systems, 2023; 147: 108904.
[11] Chen Minwu, Liang Zongyou, Cheng Zhe, et al.Optimal Scheduling of FTPSS With PV and HESS Considering the Online Degradation of Battery Capacity[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 936-947.
[12] 杨健维,冯素华,郭惠斌,等.多变电所互联牵引供电系统光储容量优化配置[J/OL]. 西南交通大学学报,1-11[2025-07-10].
Yang Jianwei, Feng Suhua, Guo Huibin, et al.Optimal Configuration of Photovoltaic Energy Storage Capacity in Multi-substation Interconnected Traction Power Supply System[J/OL]. Journal of Southwest Jiaotong University, 1-11[2025-07-10].
[13] Liu Guodong, Ferrari Max, Ollis Ben, et al. Resilient Microgrid Scheduling Considering Stochastic Chance-constrained Islanding Capability[C].2023 IEEE Power and Energy Society General Meeting, Orlando, FL, United states, 2023-July
[14] Yang Mao, Sun Li, Wang Jinxin.Multi-objective optimization scheduling considering the operation performance of islanded microgrid[J]. IEEE Access, 2020; 8: 83405-83413.
[15] Liu Guodong, Ollis Thomas Ben, Zhang Yichen, et al.Robust Microgrid Scheduling with Resiliency Considerations[J]. IEEE Access, 2020; 8: 153169-153182.
[16] Chu Zhongda, Zhang Ning, Teng Fei.Frequency-Constrained Resilient Scheduling of Microgrid: A Distributionally Robust Approach[J]. IEEE Transactions on Smart Grid, 2021; 12(6): 4914-4925.
[17] Keshavarzi MD, Ali MH. Disturbance Resilience Enhancement of Islanded Hybrid Microgrid under High Penetration of Renewable Energy Resources by BESS[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Chicago, IL, United states, 2020-October.
[18] Younesi A, Wang Z, Dorado-Rojas S, et al. Quantification of DERs Penetration Level in Microgrids: A Quest for Enhancing Short-Term Power Grid Resilience[C].2023 IEEE Power and Energy Society General Meeting, Orlando, FL, United states, 2023-July.
[19] Chen Yize, Wang Yishen, Kirschen D, et al.Model-free renewable scenario generation using generative adversarial networks[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3265-3275.
[20] 马燕峰,傅钰,赵书强,等.基于WGAN 风光资源场景模拟和时序生产模拟的新能源电源容量配置[J].电力自动化设备, 2020, 40(11): 77-86.
Ma Yanfeng,Fu Yu,Zhao Shuqiang, et al.Capacity allocation of new energy source based on wind and solar resource scenario simulation using WGAN and sequential production simulation[J]. Electric Power Automation Equipment, 2020, 40(11): 77-86.
[21] 王彦哲,周胜,王宇,等.中国核电和其他电力技术环境影响综合评价[J].清华大学学报(自然科学版),2021, 61(04): 377-384.
Wang Yanzhe, Zhou Sheng, Wang Yu, et al.Comprehensive assessment of the environmental impact of China's nuclear and other power generation technologies[J]. Qinghua Daxue Xuebao, 2021, 61(04): 377-384.
[22] 陈聿,田博今,彭云竹,等. 联合手肘法和期望最大化的高斯混合聚类电力系统客户分群算法[J].计算机应用,2020,40(11):3217-3223.
Chen Yu, Tian Bojin, Peng Yunzhu, et al.Customer Grouping Algorithm for Combined Elbow Method and Expectantly Maximized Gaussian Hybrid Clustering Power System[J]. Computer Applications, 2020, 40(11): 3217-3223.
[23] 孙文浩, 张乔, 刘志刚, 等. 考虑高海拔山区铁路沿线电网灵活性的分布鲁棒优化方法研究[J]. 电网技术, 2023, 47(06): 2485-2497.
Sun Wenhao, Zhang Qiao, Liu Zhigang, et al.A Distributionally Robust Optimization Method Considering the Flexibility of Power Grid Along High Altitude Mountain Railway[J]. Dianwang Jishu, 2023, 47(06): 2485-2497.
[24] Chen Xing, Li Kang, Zhang Li, et al.Robust Optimization of Energy-Saving Train Trajectories Under Passenger Load Uncertainty Based on p-NSGA-II[J]. IEEE Transactions on Transportation Electrification, 2023; 9(1): 1826-1844.
[25] Hamisu Umar N, Bora B, Banerjee C, et al.Performance and economic viability of the PV system in different climatic zones of Nigeria[J]. Sustainable Energy Technol Assess. 2021; 43. |