|
|
|
| Cogging Torque Suppression of Interior Spoke-Type Permanent Magnet Synchronous Motors with Rotor Trapezoidal Groove |
| Wu Shengnan1, Tong Yueyang1, Tong Wenming2 |
1. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2. National Engineering Research Center for Rare-Earth Permanent Magnet Machines Shenyang University of Technology Shenyang 110870 China |
|
|
|
Abstract To solve the problems of ample cogging torque and severe torque fluctuation of interior permanent magnet synchronous motors (IPMSM), an interior spoke-type IPMSM cogging torque suppression method with a trapezoidal groove structure of the rotor core is proposed. This method can effectively reduce the harmonic proportion of cogging torque and no-load back electromotive force of the motor, as well as the torque fluctuation of the motor. Firstly, the cogging torque calculation formula of the IPMSM with a semi-closed groove is derived by an analytical method. Changing the polar arc coefficient and air gap shape of the permanent magnet motor can effectively suppress cogging torque. For the interior spoke-type structure, a new method for reducing the cogging torque is proposed. A new expression for calculating the polar arc coefficient is proposed to change the shape of the air gap and the polar arc coefficient by changing the shape and size of the grooving. Secondly, taking a 14-pole 12-slot interior spoke-type permanent magnet synchronous motor as an example, the influence of trapezoidal groove height on cogging torque is explored by finite element simulation. The cogging torque decreases with the increase in notch height. At the same time, the influence of the short-side opening angle and the long-side opening angle of the trapezoidal groove on the cogging torque is analyzed under the combination of three common pole grooves: 14-pole 12-slot, 10-pole 12-slot, and 16-pole 18-groove. Combined with the cogging torque calculation formula, polar arc coefficient calculation formula, and finite element simulation analysis, the trapezoidal groove selection formula is given. In addition, this paper compares the no-load back EMF, back EMF harmonic proportion, cogging torque, and torque fluctuation of the slot-less rotor, rectangular slot rotor structure, and the optimized trapezoidal slot rotor structure permanent magnet synchronous motor. The cogging torque of the trapezoidal rotor is reduced by 90.9% and 83.6% compared with the rectangular groove rotor and the slot-less structure. The output torque of the slot-less structure motor is low, and the torque fluctuation of the trapezoidal slot motor is 54% lower than that of the rectangular slot motor when the output torque of the slot-less structure motor is close. The torque output performance of the motor is stable. Finally, the motor no-load test and static cogging torque test were carried out. The effective value of the no-load back electromotive force of the test prototype was 7.75 V. The cogging torque was 6 mN·m with an error of 2.92%. The experimental errors are all within the allowable range, verifying the effectiveness and practicability of the finite element simulation. This paper provides an effective method to solve the problem of significant cogging torque and torque fluctuation of IPMSM.
|
|
Received: 26 November 2024
|
|
|
|
|
|
[1] 佟文明, 姚颖聪, 李世奇, 等. 考虑磁桥不均匀饱和的内置式永磁同步电机等效磁网络模型[J]. 电工技术学报, 2022, 37(12): 2961-2970. Tong Wenming, Yao Yingcong, Li Shiqi, et al.Equivalent magnetic network model for interior permanent magnet machines considering non-uniform saturation of magnetic bridges[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 2961-2970. [2] Peng Chen, Wang Daohan, Feng Zhenkang, et al.A new segmented rotor to mitigate torque ripple and electromagnetic vibration of interior permanent mag- net machine[J]. IEEE Transactions on Industrial Elec- tronics, 2022, 69(2): 1367-1377. [3] 高鹏, 任红兴, 王晓远, 等. 磁极径向组合式定子无磁轭模块化轴向磁通电机磁热特性分析[J/OL]. 电工技术学报, 2024: 1-15. (2024-10-30). https://link. cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241230. Gao Peng, Ren Hongxing, Wang Xiaoyuan, et al. Magnetic and thermal characteristics analysis of magnetic pole radial combination yokeless and segmented armature axial flux machine[J/OL]. Transa- ctions of China Electrotechnical Society, 2024: 1-15. (2024-10-30). https://link.cnki.net/doi/10.19595/j.cnki. 1000-6753.tces.241230. [4] 李仕豪, 狄冲, 刘佶炜, 等. 考虑交叉耦合影响的内置式永磁同步电机电感计算及转矩分析[J]. 电工技术学报, 2023, 38(18): 4889-4899, 4931. Li Shihao, Di Chong, Liu Jiwei, et al.Inductance calculation and torque analysis of interior permanent magnet synchronous machine considering cross- coupling effects[J]. Transactions of China Electro- technical Society, 2023, 38(18): 4889-4899, 4931. [5] 孙玉华, 赵文祥, 吉敬华, 等. 高转矩性能多相组永磁电机及其关键技术综述[J]. 电工技术学报, 2023, 38(6): 1403-1420. Sun Yuhua, Zhao Wenxiang, Ji Jinghua, et al.Overview of multi-star multi-phase permanent magnet machines with high torque performance and its key technologies[J]. Transactions of China Electro- technical Society, 2023, 38(6): 1403-1420. [6] 王道涵, 彭晨, 王柄东, 等. 电动汽车新型转子内置式永磁同步电动机转矩脉动与电磁振动抑制研究[J]. 中国电机工程学报, 2022, 42(14): 5289-5300. Wang Daohan, Peng Chen, Wang Bingdong, et al.Research on a novel interior permanent magnet machine with segmented rotor to mitigate torque ripple and electromagnetic vibration[J]. Proceedings of the CSEE, 2022, 42(14): 5289-5300. [7] 王群京, 郑耀达, 刘先增. 基于结构参数优化的电机振动噪声的抑制研究[J]. 电气工程学报, 2023, 18(2): 16-25. Wang Qunjing, Zheng Yaoda, Liu Xianzeng.Research on suppression of motor vibration and noise based on structural parameter optimization[J]. Journal of Elec- trical Engineering, 2023, 18(2): 16-25. [8] 高锋阳, 齐晓东, 李晓峰, 等. 不等宽不等厚Halbach部分分段永磁同步电机电磁性能解析计算与优化分析[J]. 电工技术学报, 2022, 37(6): 1398-1414. Gao Fengyang, Qi Xiaodong, Li Xiaofeng, et al.Analytical calculation and optimization analysis of electromagnetic performance of halbach partially- segmented permanent magnet synchronous motors with unequal width and thickness[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1398-1414. [9] 高锋阳, 齐晓东, 李晓峰, 等. 部分分段Halbach永磁同步电机优化设计[J]. 电工技术学报, 2021, 36(4): 787-800. Gao Fengyang, Qi Xiaodong, Li Xiaofeng, et al.Optimization design of partially-segmented halbach permanent magnet synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(4): 787-800. [10] 杨玉波, 王秀和, 丁婷婷. 一种削弱永磁同步电动机齿槽转矩的方法[J]. 电机与控制学报, 2008, 12(5): 520-523. Yang Yubo, Wang Xiuhe, Ding Tingting.Method of reducing cogging torque of solid-rotor permanent magnet synchronous motors[J]. Electric Machines and Control, 2008, 12(5): 520-523. [11] 杨玉波, 王秀和, 朱常青. 基于分块永磁磁极的永磁电机齿槽转矩削弱方法[J]. 电工技术学报, 2012, 27(3): 73-78. Yang Yubo, Wang Xiuhe, Zhu Changqing.Effect of permanent magnet segmentation on the cogging torque of surface mounted permanent magnet motors[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 73-78. [12] Ge Xiao, Zhu Z Q, Kemp G, et al.Optimal step-skew methods for cogging torque reduction accounting for three-dimensional effect of interior permanent magnet machines[J]. IEEE Transactions on Energy Con- version, 2017, 32(1): 222-232. [13] Ren Wu, Xu Qiang, Li Qiong, et al.Reduction of cogging torque and torque ripple in interior PM machines with asymmetrical V-type rotor design[J]. IEEE Transactions on Magnetics, 2016, 52(7): 8104105. [14] 王力新, 王晓远, 高鹏, 等. 电动汽车用内置式永磁同步电机转矩脉动分析及抑制[J]. 电工技术学报, 2024, 39(20): 6386-6396. Wang Lixin, Wang Xiaoyuan, Gao Peng, et al.Torque ripple reduction analysis of interior permanent magnet synchronous motor for electric vehicle[J]. Transa- ctions of China Electrotechnical Society, 2024, 39(20): 6386-6396. [15] Song C H, Kim D H, Kim K C.Design of a novel IPMSM bridge for torque ripple reduction[J]. IEEE Transactions on Magnetics, 2021, 57(2): 8201004. [16] Liu Chengcheng, Huang Xiaorui, Zhang Wenfeng, et al.Shape optimization and demagnetization analysis of interior permanent magnet synchronous machine with hybrid cores[J]. AIP Advances, 2023, 13(3): 035215. [17] 韩雪岩, 王勇, 高俊. 低速永磁同步电机转子偏心的抑制措施[J]. 电机与控制学报, 2023, 27(11): 58-65. Han Xueyan, Wang Yong, Gao Jun.Suppression of rotor eccentricity of low-speed permanent magnet synchronous motor[J]. Electric Machines and Control, 2023, 27(11): 58-65. [18] 位海洋. 内置式永磁同步电机的转矩脉动优化研究[D]. 沈阳: 沈阳工业大学, 2021. Wei Haiyang.Research on torque ripple optimization of interior permanent magnet synchronous machines[D]. Shenyang: Shenyang University of Technology, 2021. [19] 卢志远, 王宇, 王锁. 基于磁导等效分离的无轴承永磁同步电机齿槽转矩解析[J/OL]. 电工技术学报, 2025: 1-14. (2025-01-24). https://link.cnki.net/doi/10. 19595/j.cnki.1000-6753.tces.241318. Lu Zhiyuan, Wang Yu, Wang Suo. Analysis of cogging torque in a bearing-less permanent magnet synchronous motor based on magnetic permeability equivalent separation[J/OL]. Transactions of China Electrotechnical Society, 2025: 1-14. (2025-01-24). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753. tces.241318. [20] 邢泽智, 王秀和, 赵文良. 基于不同极弧系数组合分段倾斜磁极的表贴式永磁同步电机齿槽转矩削弱措施研究[J]. 中国电机工程学报, 2021, 41(16): 5737-5748. Xing Zezhi, Wang Xiuhe, Zhao Wenliang.Research on reduction methods of cogging torque based on segmented skewing magnetic poles with different combinations of pole-arc coefficients in surface- mounted permanent magnet synchronous motors[J]. Proceedings of the CSEE, 2021, 41(16): 5737-5748. [21] 谢颖, 黑亮声, 华邦杰, 等. 新型永磁游标电机的设计与研究[J]. 电机与控制学报, 2019, 23(2): 68-74. Xie Ying, Hei Liangsheng, Hua Bangjie, et al.Design and analysis of a new vernier permanent-magnet motor[J]. Electric Machines and Control, 2019, 23(2): 68-74. |
|
|
|