|
|
|
| High Precision Detection of SF6 Decomposition Products Based on Cavity Ring-Down Spectroscopy |
| Jiang Anhao, Deng Jin, Lü Haonan, Zhang Xinran, Zhang Chaohai |
| College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106 China |
|
|
|
Abstract Sulfur hexafluoride (SF6) is an excellent insulating medium, which is widely used in gas insulated equipment. When insulation faults such as partial discharge (PD) or overheating occur, SF6 will decompose and react with micro-water, micro-oxygen, or other solid insulating media. Detection of SF6 decomposition products has become an effective means of operation status monitoring, fault diagnosis and early warning for gas insulation equipment. H2S is a special product related to serious insulation faults such as high energy PD or high temperature local overheating. CO and CO2 are products of overheating or severe breakdown involving organic materials. However, current detection technologies cannot take into account both detection accuracy and practicability. To address the problem, this paper designs a high precision gas detection system based on the cavity ring-down spectroscopy (CRDS) with high sensitivity, low limit of detection and fast response speed, which can detect H2S, CO and CO2 gases in SF6 background. This paper first presents a prototype of the detection device with integrated optical components and embedded microprocessor units, builds an optical resonator with length of 260 mm and free spectral range of 576.9 MHz, proposes a nonlinear fitting strategy based on Levenberg-Marquardt (LM) algorithm, and designs a DFB laser driving circuit. The laser central wavelength is linearly correlated with the control temperature and current in a small range of 5~10 nm. The proposed temperature control module is monitored a current variation of ±0.02 mA and a temperature variation of ±0.001℃ within 24 hours. Then, this paper verifies the linear responses to H2S concentration in the SF6 and N2 background, measures the absorption coefficient of H2S over the concentration range from 0 to 20×10-6, and explores the response time and detection accuracy of the CRDS system. It is found that the output data at H2S concentrations of 1×10-6, 2×10-6, 5×10-6, and 10×10-6 show normal distribution characteristics with standard deviations of 22×10-9, 21×10-9, 26×10-9, and 43×10-9, respectively, and the measurement errors increase with increasing concentration. The Gaussian noise can be reduced by means of moving average. Allan variance analysis shows that the limit of detection (LoD) of H2S in SF6 is 4.25×10-9 in the CRDS system. In addition, by modulating the laser wavelength, CO and CO2 are measured over the concentration range from 0 to 200×10-6, and the LoD can reach 10.4×10-9 and 24.8×10-9. Finally, considering that the gas reactions in insulation faults are complex and generate multiple products simultaneously, this paper conducts the cross-interference experiments on H2S, CO, and CO2. The spectra of mixed gases show that the CO spectrum is relatively independent, while the H2S spectrum at 6 336.617 cm-1 and the CO2 spectrum at 6 336.242 cm-1 overlap significantly. Multiple linear regression is used to correct the cross- interference between H2S and CO2. Before correction, every 120×10-6 of CO2 resulted in a 1×10-6 over- indication of H2S, and every 5×10-6 of H2S resulted in a 12.8×10-6 over-indication of CO2. After correction, the detection error is less than 5% of the gas concentration.
|
|
Received: 10 October 2024
|
|
|
|
|
|
[1] 张国治, 胡栩焜, 邓广宇, 等. SF6及SF6故障分解气体与局部放电柔性特高频天线传感器基底相容性实验研究[J]. 电工技术学报, 2023, 38(15): 4050-4062. Zhang Guozhi, Hu Xukun, Deng Guangyu, et al.Experimental study on substrate compatibility of SF6 and SF6 fault-decomposing gases with partial discharge flexible UHF antenna sensors[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4050-4062. [2] 李昊天, 曾福平, 颜伊鸣, 等. Ag表面对SF6初级分解产物氧化反应的影响作用研究[J]. 电工技术学报, 2024, 39(9): 2841-2850. Li Haotian, Zeng Fuping, Yan Yiming, et al.Study on the effect of Ag surface on oxidation of SF6 primary decomposition products[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2841-2850. [3] 陈玉坤, 褚继峰, 阮卓奕, 等. 基于非色散红外原理的GIS内部SO2含量高精度检测方法[J]. 电工技术学报, 2025, 40(1): 241-252. Chen Yukun, Chu Jifeng, Ruan Zhuoyi, et al.High-precision detection of SO2 inside GIS based on non-dispersive infrared principle[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 241-252. [4] Mahdi A S, Abdul-Malek Z, Arshad R N.SF6 decomposed component analysis for partial discharge diagnosis in GIS: a review[J]. IEEE Access, 2022, 10: 27270-27288. [5] 曾福平, 朱可馨, 冯孝轩, 等. SF6故障分解及特征组分检测研究进展[J]. 高电压技术, 2023, 49(8): 3240-3257. Zeng Fuping, Zhu Kexin, Feng Xiaoxuan, et al.Progress in SF6 decomposition and detection of its characteristic decomposition components[J]. High Voltage Engineering, 2023, 49(8): 3240-3257. [6] Zeng Fuping, Li Haotian, Cheng Hongtu, et al.SF6 decomposition and insulation condition monitoring of GIE: a review[J]. High Voltage, 2021, 6(6): 955-966. [7] Chen Ke, Wang Nan, Guo Min, et al.Detection of SF6 gas decomposition component H2S based on fiber-optic photoacoustic sensing[J]. Sensors and Actuators B: Chemical, 2023, 378: 133174. [8] 张晓星, 李新, 刘恒, 等. 基于悬臂梁增强型光声光谱的SF6特征分解组分H2S定量检测[J]. 电工技术学报, 2016, 31(15): 187-196. Zhang Xiaoxing, Li Xin, Liu Heng, et al.The quantitative detection of SF6 characteristic decom-position component H2S based on cantilever enhanced photoacoustic spectrometry[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 187-196. [9] Zeng Fuping, Tang Ju, Fan Qingtao, et al.Decom-position characteristics of SF6 under thermal fault for temperatures below 400℃[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(3): 995-1004. [10] Wang Jiachen, Ding Weidong, Yan Jiaqi, et al.Decom-position characteristics of SF6 under overheating conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3405-3415. [11] Wan Fu, Zhou Feng, Hu Jin, et al.Highly sensitive and precise analysis of SF6 decomposition component CO by multi-comb optical-feedback cavity enhanced absorption spectroscopy with a 2.3 μm diode laser[J]. Scientific Reports, 2019, 9(1): 9690. [12] 王琼苑, 褚继峰, 李秋霖, 等. 基于微型气体传感阵列的空气绝缘设备放电故障识别[J]. 电工技术学报, 2023, 38(23): 6494-6502. Wang Qiongyuan, Chu Jifeng, Li Qiulin, et al.Miniature gas-sensing array employed for the discharge fault diagnosis of air-insulated equipment[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6494-6502. [13] Chu Jifeng, Wang Qiongyuan, Liu Yuyang, et al.Microchip employing short period thermal modulation for the detection of H2S and SO2 mixtures[J]. IEEE Transactions on Instrumentation Measurement, 2023, 72: 3238694. [14] 高新, 李志慧, 刘宇鹏, 等. 改性石墨烯基传感器对SF6分解组分H2S的吸附机理及检测特性研究[J]. 电工技术学报, 2023, 38(13): 3606-3618. Gao Xin, Li Zhihui, Liu Yupeng, et al.Study on adsorption mechanism and detection characteristics of modified graphene sensors for SF6 decomposed com-ponent H2S[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3606-3618. [15] 张潮海, 邹可园, 张晓星. 高压电气设备绝缘气体分解产物光学检测技术研究综述[J]. 高电压技术, 2023, 49(7): 2806-2815. Zhang Chaohai, Zou Keyuan, Zhang Xiaoxing.Review on optical detection technology of insulating gas decomposition products for high voltage electrical equipment[J]. High Voltage Engineering, 2023, 49(7): 2806-2815. [16] Dong Ming, Zhang Chongxing, Ren Ming, et al.Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products[J]. Sensors, 2017, 17(11): 2627. [17] Maity A, Maithani S, Pradhan M.Cavity ring-down spectroscopy: recent technological advancements, techniques, and applications[J]. Analytical Chemistry, 2021, 93(1): 388-416. [18] Gordon I E, Rothman L S, Hargreaves R J, et al.The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277: 107949. [19] 国家能源局. 电力设备用六氟化硫气体: DL/T 1366—2023[S]. 北京: 中国电力出版社, 2023. [20] 国家能源局. 六氟化硫检测仪技术条件—分解产物检测仪: DL/T 1876.1—2018[S]. 北京: 中国电力出版社, 2019. [21] Marquardt D W.An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. [22] Allan D W.Statistics of atomic frequency standards[J]. Proceedings of the IEEE, 54(2): 221-230. [23] El-Sheimy N, Hou Haiying, Niu Xiaoji.Analysis and modeling of inertial sensors using allan variance[J]. IEEE Transactions on Instrumentation Measurement, 2008, 57(1): 140-149. [24] Zeng Fuping, Feng Xiaoxuan, Chen Xiaoyue, et al.Ag-doped Ti3C2Tx sensor: a promising candidate for low-concentration H2S gas sensing[J]. High Voltage, 2024, 9(3): 537-545. [25] Tang Mingcong, Zhang Dongzhi, Sun Yuehang, et al.CVD-fabricated Co3O4-Co3S4 heterojunction for ultra-sensitive detection of CO in SF6 discharge decomposition products[J]. Sensors and Actuators B: Chemical, 2024, 401: 134968. [26] Tian Xing, Cheng Gang, Cao Yanan, et al.Simul-taneous detection of hydrogen sulfide and carbon dioxide based on off-axis integrated cavity output spectroscopy using a near-infrared distributed feedback diode laser[J]. Microwave and Optical Technology Letters, 2021, 63(8): 2074-2078. [27] 娄登程, 饶伟, 宋俊玲, 等. 基于离轴积分腔输出光谱的燃烧场CO浓度测量研究[J]. 光谱学与光谱分析, 2022, 42(12): 3678-3684. Lou Dengcheng, Rao Wei, Song Junling, et al.Research of carbon monoxide concentration measurement in combustion field by off-axis integrated cavity output spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(12): 3678-3684. [28] Yin Xukun, Gao Miao, Miao Ruiqi, et al.Near-infrared laser photoacoustic gas sensor for simultaneous detection of CO and H2S[J]. Optics Express, 2021, 29(21): 34258-34268. [29] Wang Zhengzhi, Zhang Yajie, Huang Xijie, et al.Miniature mid-infrared photoacoustic gas sensor for detecting dissolved carbon dioxide in seawater[J]. Sensors and Actuators B: Chemical, 2024, 405: 135370. [30] 熊枫, 彭志敏, 王振, 等. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量[J]. 物理学报, 2023, 72(4): 41-49. Xiong Feng, Peng Zhimin, Wang Zhen, et al.Accurate measurement of trace H2S concentration based on cavity ring-down absorption spectroscopy under CO2/CO disturbance[J]. Acta Physica Sinica, 2023, 72(4): 41-49. [31] 王振, 杜艳君, 丁艳军, 等. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度[J]. 物理学报, 2022, 71(4): 115-123. Wang Zhen, Du Yanjun, Ding Yanjun, et al.Monitoring of ambient carbon monoxide concentrations based on wavelength modulation direct absorption spectroscopy[J]. Acta Physica Sinica, 2022, 71(4): 115-123. [32] Lv Haonan, Zhang Xinran, Jiang Anhao, et al.Detection of SF6 decomposition components H2S and CO2 based on WDM and CRDS[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 31(6): 2922-2929. [33] 陈图南, 马凤翔, 袁小芳, 等. SF6气体绝缘电气设备故障分解物检测的多组分交叉干扰及校正算法综述[J]. 电工电能新技术, 2021, 40(1): 43-54. Chen Tunan, Ma Fengxiang, Yuan Xiaofang, et al.Review on cross interference and its modification in multiple component gas detection for SF6 insulated equipment[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(1): 43-54. [34] 王前进, 孙鹏帅, 张志荣, 等. 混合气体测量中重叠吸收谱线交叉干扰的分离解析方法[J]. 物理学报, 2021, 70(14): 233-242. Wang Qianjin, Sun Pengshuai, Zhang Zhirong, et al.Separation and analysis method of overlapping absorp-tion spectra with cross interference in gas mixture measurement[J]. Acta Physica Sinica, 2021, 70(14): 233-242. |
|
|
|