|
|
|
| Method for Characterizing the Safety Region of HVAC-Connected Offshore Wind Power Plants under Multi-Harmonic Constraints |
| Zhao Wenrui1, Qin Qianqian1, Wang Tong1, Huang Xiaoming2, Xu Qunwei2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. State Grid Zhejiang Electric Power Research Institute Hangzhou 310014 China |
|
|
|
Abstract During the 14th Five-Year Plan, China plans to build five offshore wind power bases with a total capacity exceeding 12 GW. Large-capacity, long-distance offshore wind power marks the future of wind energy development. Among the three mainstream grid integration technologies—HVDC, HVAC, and fractional-frequency transmission—HVAC is widely adopted in nearshore projects due to its technological maturity. However, when large-scale offshore wind farms connect to the grid via HVAC (OWFs-HVAC), the coupling between the dynamic characteristics of long-distance AC cables and the complex frequency-domain behavior of nonlinear power electronic devices leads to multimodal and weakly damped system features. The capacitive effect of the cables further shifts natural resonance points toward low-frequency harmonics, amplifying these harmonics and creating significant challenges in offshore wind integration. To address harmonic risks arising from HVAC integration under varying conditions, this study proposes a method to analyze harmonic levels and define safe operating regions. By characterizing the harmonic safety region for HVAC-connected offshore wind systems, a harmonic frequency-domain model is established to derive the nodal admittance matrix, incorporating harmonic sources from both the onshore grid and offshore wind farms. Using harmonic nodal voltage equations, harmonic levels under background harmonics are quantified. Additionally, a harmonic impedance sensitivity analysis is conducted through the inverse matrix differentiation method, with a comprehensive index introduced to evaluate harmonic risks and safety margins under voltage and current constraints. Simulations of a 1 100 MW offshore wind power grid-connected system are carried out to examine harmonic impedance sensitivity and the harmonic safety region under both normal operating conditions and PCC near-zone disconnection scenarios. Simulations based on actual wind farm data reveal that under normal conditions, the 11th harmonic is the primary amplified frequency, with currents reaching 60 A in some scenarios—over six times the limit. The 5th and 7th harmonics are also significant. Both safety region and sensitivity analyses confirm a strong correlation between harmonic risks and the number of operating turbines. In PCC near-zone disconnection scenarios, the 5th harmonic dominates, with harmonic voltage and current showing higher sensitivity to AC cables. Reducing the cable length by 20%, while maintaining turbine numbers, significantly reduces the 5th harmonic current, validating the safety region characterization. Frequency-domain multimodal features from long-distance AC cables result in irregular harmonic safety region distributions. The turbine operation ratio impacts both the harmonic admittance matrix and the magnitude of harmonic sources, leading to significant coupling between harmonic levels and turbine operations. The dominant harmonic frequency shifts between the 5th, 7th, 11th, and 13th across different scenarios. This method supports planning and construction of offshore wind power projects by optimizing offshore distances and installed capacities. The following conclusions can be drawn from the simulation analysis: (1) The proposed comprehensive harmonic evaluation index accurately assesses the harmonic safety of the system and can effectively identifies harmonic risk scenarios. (2) As the total parallel length of high-voltage AC cables increases and the grid strength decreases, the harmonic safety level of OWFs-HVAC systems declines. The extent of harmonic amplification is not directly related to the number of wind turbines connected or disconnected, but the dominant harmonic frequencies vary under different turbine connection and disconnection combinations. This variability complicates harmonic suppression efforts for offshore wind integration, challenging the effectiveness of traditional single-tuned passive filters. (3) For the OWFs-HVAC systems, the harmonic current and voltage safety margins at the point of interconnection are low, harmonic compensation devices of appropriate capacity should be configured based on the cable length and wind farm capacity.
|
|
Received: 12 October 2024
|
|
|
|
|
|
[1] 中华人民共和国国家发展和改革委员会. “十四五”可再生能源发展规划[EB/OL]. (2022-01-01). https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202206/P020220602315308557623.pdf. [2] 国务院国有资产监督管理委员. 向深远海挺进!我国加速打造五大海上风电基地[EB/OL]. (2023-03-30). http://www.sasac.gov.cn/n2588025/n2588124/c27563663/content.html. [3] Cumulative installed offshore wind power capacity in China from2013 to 2023[EB/OL]. [2024-09-10]. https: //www.statista.com/study/167402/wind-power-in-china/. [4] 严新荣, 张宁宁, 马奎超, 等. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45(1): 1-12. Yan Xinrong, Zhang Ningning, Ma Kuichao, et al.Overview of current situation and trend of offshore wind power development in China[J]. Power Generation Technology, 2024, 45(1): 1-12. [5] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466. Wang Xifan, Wei Xiaohui, Ning Lianhui, et al.Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466. [6] 徐政. 海上风电送出主要方案及其关键技术问题[J]. 电力系统自动化, 2022, 46(21): 1-10. Xu Zheng.Main schemes and key technical problems for grid integration of offshore wind farm[J]. Automation of Electric Power Systems, 2022, 46(21): 1-10. [7] 徐政, 金砚秋, 李斯迅, 等. 海上风电场交流并网谐波谐振放大机理分析与治理[J]. 电力系统自动化, 2021, 45(21): 85-91. Xu Zheng, Jin Yanqiu, Li Sixun, et al.Mechanism analysis and mitigation of harmonic resonance amplification caused by AC integration of offshore wind farm[J]. Automation of Electric Power Systems, 2021, 45(21): 85-91. [8] 邵振国, 许昊铂, 肖颂勇, 等. 新能源电网中的谐波问题[J]. 电力系统保护与控制, 2021, 49(4): 178-187. Shao Zhenguo, Xu Haobo, Xiao Songyong, et al.Harmonic problems in a new energy power grid[J]. Power System Protection and Control, 2021, 49(4): 178-187. [9] Fillion Y, Deschanvres S.Background harmonic amplifications within offshore wind farm connection projects[C]//Proceedings of Power Systems Transient, Cavtat, 2015: 1-8. [10] 马智泉, 李培, 徐群伟, 等. 海上风电场谐波异常的调查与试验分析[J]. 电网技术, 2022, 46(8): 2928-2937. Ma Zhiquan, Li Pei, Xu Qunwei, et al.Investigation and experimental analysis of harmonic anomaly in offshore wind farm[J]. Power System Technology, 2022, 46(8): 2928-2937. [11] 杜婉琳, 梅桂华, 马明, 等. 考虑谐波谐振和电压稳定的海上风电场无功优化配置方法[J]. 全球能源互联网, 2023, 6(6): 599-607. Du Wanlin, Mei Guihua, Ma Ming, et al.Reactive power configuration method of offshore wind farm considering over voltage and harmonic resonance[J]. Journal of Global Energy Interconnection, 2023, 6(6): 599-607. [12] 赵文瑞, 黄晓明, 秦倩倩, 等. 基于SVG附加控制的长距离交流海缆送出海上风电场群背景谐波抑制策略[J/OL]. 电网技术, 2024: 1-13. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DWJS20240409002&dbname=CJFD&dbcode=CJFQ. Zhao Wenrui, Huang Xiaoming, Qin Qianqian, et al. Suppression strategy of background harmonics of long-distance AC submarine cables sent out of offshore wind farms based on SVG additional control [J/OL]. Power System Technology, 2024: 1-13. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DWJS20240409002&dbname=CJFD&dbcode=CJFQ. [13] 郑超航, 吴熙, 袁超, 等. 基于准谐振滑模扰动观测器的STATCOM海上风电场谐波抑制策略[J]. 中国电机工程学报, 2025, 45(9): 3504-3519. Zheng Chaohang, Wu Xi, Yuan Chao, et al.Quasi resonant sliding mode perturbation observer of STATCOM for harmonic mitigation in offshore wind farm[J]. Proceedings of the CSEE, 2025, 45(9): 3504-3519. [14] 徐群伟. 多模块有源电力滤波器并联系统若干关键技术及可靠性研究[D]. 杭州: 浙江大学, 2017.Qunwei Xu. Research on key techniques and reliability of multi-modular active power filter parallel system[D]. Hangzhou: Zhejiang University, 2017. [15] 李珍, 唐欣, 何洋, 等. 抑制电网背景谐波的变流器导纳重塑方法[J]. 中国电机工程学报, 2024, 44(2): 704-714. Li Zhen, Tang Xin, He Yang, et al.Admittance reshaping method of converter for suppressing background harmonic of grid[J]. Proceedings of the CSEE, 2024, 44(2): 704-714. [16] 陈林, 徐永海, 王天泽, 等. 弱电网下计及背景谐波的多并网逆变器阻抗重塑谐振抑制方法[J]. 电力系统保护与控制, 2024, 52(1): 59-72. Chen Lin, Xu Yonghai, Wang Tianze, et al.Resonance suppression method for multiple grid-connected inverters with impedance remodeling with background harmonics in a weak power grid[J]. Power System Protection and Control, 2024, 52(1): 59-72. [17] 杨权, 梁永昌, 魏建荣, 等. 多谐波源下分布式电源并网逆变器的谐波抑制策略[J]. 电工技术学报, 2023, 38(11): 2908-2920. Yang Quan, Liang Yongchang, Wei Jianrong, et al.Research on harmonic suppression strategy of grid connected inverter under multi-harmonic sources[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2908-2920. [18] 唐爱红, 宋幸, 尚宇菲, 等. 基于分布式潮流控制器的海上风电系统谐波治理方法和控制策略[J]. 电力系统自动化, 2024, 48(2): 20-28. Tang Aihong, Song Xing, Shang Yufei, et al.Harmonic mitigation method and control strategy of offshore wind power system based on distributed power flow controller[J]. Automation of Electric Power Systems, 2024, 48(2): 20-28. [19] 周豪, 李辉, 向学位, 等. 基于谐波映射规律的非对称多相电机单频率比例谐振控制器谐波统一抑制策略[J]. 电工技术学报, 2025, 40(8): 2518-2531.Zhou Hao, Li Hui, Xiang Xuewei, et.al. Harmonic suppression strategy of single frequency proportional sesonance controller for asymmetric multiphase motors based on harmonic mapping law[J]. Transactions of China Electrotechnical Society, 2025, 40(8): 2518-2531. [20] 黄春光, 刘建春, 武明科. 一种逆变器的并网-谐波治理综合控制方法[J]. 电气技术, 2024, 25(11): 30-36. Huang Chunguang, Liu Jianchun, Wu Mingke.An integrated grid-connected-harmonic control method for inverters[J]. Electrical Engineering, 2024, 25(11): 30-36. [21] 李戎, 李建文, 李永刚, 等. 结合特征根及模态分析法的逆变器多机并网系统谐波扰动响应分析[J]. 电工技术学报, 2024, 39(14): 4519-4534. Li Rong, Li Jianwen, Li Yonggang, et al.Analysis of harmonic disturbance response of multi-inverter grid-connected system combining characteristic root and modal analysis method[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4519-4534. [22] 徐政. 基于s域节点导纳矩阵的谐振稳定性分析方法[J]. 电力自动化设备, 2023, 43(10): 1-8. Xu Zheng.Resonance stability analysis method based on s-domain node admittance matrix[J]. Electric Power Automation Equipment, 2023, 43(10): 1-8. [23] Mugambi G R, Darii N, Khazraj H, et al.Methodologies for offshore wind power plants stability analysis [EB/OL]. https://arxiv.org/abs/2410.13521v1. [24] 李建闽, 曹远远, 姚文轩, 等. 基于自适应移频滤波的电力系统谐波分析方法[J]. 电工技术学报, 2024, 39(13): 4015-4024. Li Jianmin, Cao Yuanyuan, Yao Wenxuan, et al.Power system harmonic analysis method based on adaptive frequency-shift filtering[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 4015-4024. [25] 陈艺煌, 邵振国, 林俊杰, 等. 融合多源量测数据的区间型抗差谐波状态估计[J]. 电工技术学报, 2024, 39(23): 7394-7405. Chen Yihuang, Shao Zhenguo, Lin Junjie, et al.Interval harmonic robust state estimation method based on multi-source measurement data fusion[J]. Transactions of China Electrotechnical Society, 2024, 39(23): 7394-7405. [26] 周柯, 涂春鸣, 谢伟杰, 等. 宽频域谐波谐振劣化问题及其对谐波标准的影响分析[J]. 电工技术学报, 2018, 33(增刊2): 567-576. Zhou Ke, Tu Chunming, Xie Weijie, et al.Analysis of resonance degradation problem of wide-band frequency harmonics and its influence on harmonic standards[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 567-576. [27] Manitoba Hydro International Ltd. EMTDC User's Guide v4.6[EB/OL]. https://www.pscad.com/knowledge-base/article/163. [28] 邢法财. 含非同步机电源电力系统的宽频谐振问题研究[D]. 杭州: 浙江大学, 2021.Xing Facai. Research on broadband resonance problems of power system with non-synchronous generators[D]. Hangzhou: Zhejiang University, 2021. [29] 甘繁欣, 郭春义, 程浩, 等. 双馈风电场等值阻抗模型在高频振荡研究中的适用性分析与评价[J]. 中国电机工程学报, 2023, 43(19): 7497-7509. Gan Fanxin, Guo Chunyi, Cheng Hao, et al.Analysis and evaluation of the applicability of doubly-fed wind farm equivalent impedance model in high frequency resonance research[J]. Proceedings of the CSEE, 2023, 43(19): 7497-7509. [30] Wakileh G J.Power Systems Harmonics: Fundamentals, Analysis and Filter Design[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. [31] 高登飞, 于波, 杨永焱, 等. 海上风电场海缆接地方式安全性分析[J]. 高压电器, 2022, 58(12): 61-68. Gao Dengfei, Yu Bo, Yang Yongyan, et al.Safety analysis on the cable grounding mode for a offshore wind farm[J]. High Voltage Apparatus, 2022, 58(12): 61-68. [32] 王晗玥, 许建中. 风电场站单机聚合模型倍乘元件阻抗参数设计[J]. 电力系统保护与控制, 2023, 51(21): 146-157. Wang Hanyue, Xu Jianzhong.Design of impedance parameters of a multiplier element in an aggregation model of a single wind turbine of a wind farm[J]. Power System Protection and Control, 2023, 51(21): 146-157. [33] 国家技术监督局. 电能质量公用电网谐波: GB/T 14549—93[S]. 北京: 中国标准出版社, 1994. [34] 刘朋印, 刘辉, 吴林林, 等. 满足全运行域振荡约束的跟网-构网组合控制及优化配置[J]. 电力系统自动化, 2024, 48(12): 139-146. Liu Pengyin, Liu Hui, Wu Linlin, et al.Grid-following and grid-forming combined control and optimal configuration to satisfy oscillation constraints across whole operating region[J]. Automation of Electric Power Systems, 2024, 48(12): 139-146. [35] 王小明, 郑浩, 赵文广, 等. 计及背景谐波时变特征的系统谐波阻抗估计方法[J/OL]. 电源学报, 2024: 1-13. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20241210001&dbname=CJFD&dbcode=CJFQ. Wang Xiaoming, Zhang Hao, Zhao Wenguang, et al. Utility harmonic impedance estimation method considering time-varying characteristics of background harmonics[J/OL]. Journal of Power Supply, 2024: 1-13. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20241210001&dbname=CJFD&dbcode=CJFQ. |
|
|
|