|
|
|
| Analysis of Technological Evolution and Operational Challenges for Virtual Power Plants in New Power Systems |
| Gao Hongchao1, Kang Chongqing1, Li Jiayu1, Cui Yong2, Li Lei3 |
1. Department of Electrical Engineering Tsinghua University Beijing 100084 China; 2. State Grid Shanghai Electric Power Co. Ltd Shanghai 200437 China; 3. State Grid Zhejiang Electric Power Co. Ltd Hangzhou 310007 China |
|
|
|
Abstract In recent years, virtual power plant (VPP) technology has continuously developed, with increasingly diverse application scenarios and significant demonstration effects. As a new type of power source, VPP has become an integral component of flexible resources in new power systems. Benefiting from the integrated development of power and IoT technologies, the VPP technical paradigm promotes the construction of operational capabilities for distributed resources characterized by being measurable, observable, adjustable, and controllable (“four controllability features”). However, the technical framework for supply-demand interaction under cyber-physical-social multi-dimensional coupling from the aggregation perspective has not yet achieved a comprehensive breakthrough, and an operational paradigm ensuring physical assurance, cyber assurance, and value assurance (“triple assurance”) urgently requires establishment. It is critical for transforming VPP from a stochastic resource to a deterministic resource, thereby enabling normalized operation and large-scale applications. This study first conducts a quantitative analysis of academic publications on VPP technology in EI-indexed Chinese journals across three temporal segments (2013—2017, 2018—2021, and 2022—2024), through which research hotspots in this domain are systematically identified. Research findings reveal that during the initial phase (2013—2017), domestic scholars predominantly focused on VPP market operation mechanisms and business model design. In the second stage (2018—2021), the research hotspots progressively shifted from market operations to dispatch control. In the third phase (2022—2024), while focusing on bidding strategies in electricity markets and operational optimization algorithms for VPP, the research direction demonstrates a trend of diversified developments toward low-carbon operation, credibility assurance through aggregation, and security protection. The study evaluates the changing trends and evolutionary directions of VPP core technologies. The findings demonstrate that VPP core technologies have evolved from a unitary technical perspective into a cyber- physical-social multi-perspective integrated system. Under this coupled perspective, distributed resource interaction mechanisms, high-dimensional uncertainty modeling for aggregation computing, and rapid-solving techniques meeting multi-timescale regulation requirements of power systems will constitute key future research trends. There are four constraints on the normalized operation and large-scale application of VPP within China's electricity market context from a top-level planning perspective: (1) Lack of consensus on conceptual thinking and discerning critical notions, such as technical purpose, technical scope, and technical value. (2) Urgent requirement to establish market positioning, due to the absence of an operational ecosystem and entity cultivation mechanisms adapted to its development. (3) Urgent requirement to analyze demand orientation, as relationships with the new power system, system economy, reliability, and cleanliness remain unclarified. (4) Incomplete technical frameworks in power communication, artificial intelligence, end-user security, and trusted architecture. Aligned with the new power system construction requirements and informed by current market operations of typical domestic VPP demonstration projects, actionable recommendations for VPP sustainable development are put forward: (1) Establish and improve technical standards for VPP, business scenario planning, and access rules. (2) Continuously promote the mining of demand-side flexibility to strengthen the planning, configuration, and top-level design of VPP. (3) Reasonably formulate market mechanisms and business models for VPP, promoting a sustainable market-oriented operational ecosystem. (4) Comprehensively enhance multi-timescale dispatch technologies for VPP, reinforcing multi-category flexibility supply levels. These research outcomes are intended to provide references for the theoretical innovation and technological development of VPP.
|
|
Received: 24 April 2025
|
|
|
|
|
|
[1] 廖思阳, 贺聪, 李玲芳, 等. 考虑电力网络约束的工业园区型虚拟电厂调控边界求解方法[J]. 电力系统自动化, 2024, 48(18): 66-75. Liao Siyang, He Cong, Li Lingfang, et al.Solution method of regulation boundary for industrial park virtual power plantconsidering power network con-straints[J]. Automation of Electric Power Systems, 2024, 48(18): 66-75. [2] Gao Hongchao, Jin Tai, Feng Cheng, et al.Review of virtual power plant operations: resource coordination and multidimensional interaction[J]. Applied Energy, 2024, 357: 122284. [3] 王磊, 徐志龙, 杨晨宇, 等. 虚拟电厂集群电-碳联合优化建模及求解方法[J]. 电力系统自动化, 2024, 48(23): 29-40. Wang Lei, Xu Zhilong, Yang Chenyu, et al.Modeling and solving method of electricity-carbon joint opti-mization for virtual power plant clusters[J]. Auto-mation of Electric Power Systems, 2024, 48(23): 29-40. [4] 王宣元, 刘蓁. 虚拟电厂参与电网调控与市场运营的发展与实践[J]. 电力系统自动化, 2022, 46(18): 158-168. Wang Xuanyuan, Liu Zhen.Development and practice of virtual power plant participating in power grid regulation and market operation[J]. Automation of Electric Power Systems, 2022, 46(18): 158-168. [5] 李翔宇, 赵冬梅. 基于模糊-概率策略实时反馈的虚拟电厂多时间尺度优化调度[J]. 电工技术学报, 2021, 36(7): 1446-1455. Li Xiangyu, Zhao Dongmei.Research on multi-time scale optimal scheduling of virtual power plant based on real-time feedback of fuzzy-probability strategy[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1446-1455. [6] Wang Xuanyuan, Liu Zhen, Zhang Hao, et al.A review on virtual power plant concept, application and challenges[C]//2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 2019: 4328-4333. [7] 康重庆, 陈启鑫, 苏剑, 等. 新型电力系统规模化灵活资源虚拟电厂科学问题与研究框架[J]. 电力系统自动化, 2022, 46(18): 3-14. Kang Chongqing, Chen Qixin, Su Jian, et al.Scientific problems and research framework of virtual power plant with enormous flexible distributed energy resources in new power system[J]. Automation of Electric Power Systems, 2022, 46(18): 3-14. [8] Bhuiyan E A, Hossain M Z, Muyeen S M, et al.Towards next generation virtual power plant: Tech-nology review and frameworks[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111358. [9] Rouzbahani H M, Karimipour H, Lei Lei.A review on virtual power plant for energy management[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101370. [10] Zajc M, Kolenc M, Suljanović N.Virtual Power Plant Communication System Architecture[M]. Amsterdam: Elsevier, 2019. [11] Naval N, Yusta J M.Virtual power plant models and electricity markets-a review[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111393. [12] 赵昊天, 王彬, 潘昭光, 等. 支撑云-群-端协同调度的多能园区虚拟电厂: 研发与应用[J]. 电力系统自动化, 2021, 45(5): 111-121. Zhao Haotian, Wang Bin, Pan Zhaoguang, et al.Research and application of park-level multi-energy virtual power plants supporting cloud-cluster-end multi-level synergetic dispatch[J]. Automation of Electric Power Systems, 2021, 45(5): 111-121. [13] 殷爽睿, 艾芊, 宋平, 等. 虚拟电厂分层互动模式与可信交易框架研究与展望[J]. 电力系统自动化, 2022, 46(18): 118-128. Yin Shuangrui, Ai Qian, Song Ping, et al.Research and prospect of hierarchical interaction mode and trusted transaction framework for virtual power plant[J]. Automation of Electric Power Systems, 2022, 46(18): 118-128. [14] 谢开, 刘敦楠, 李竹, 等. 适应新型电力系统的多维协同电力市场体系[J]. 电力系统自动化, 2024, 48(4): 2-12. Xie Kai, Liu Dunnan, Li Zhu, et al.Multi-dimensional collaborative electricity market system for new power system[J]. Automation of Electric Power Systems, 2024, 48(4): 2-12. [15] 葛鑫鑫, 付志扬, 徐飞, 等. 面向新型电力系统的虚拟电厂商业模式与关键技术[J]. 电力系统自动化, 2022, 46(18): 129-146. Ge Xinxin, Fu Zhiyang, Xu Fei, et al.Business model and key technologies of virtual power plant for new power system[J]. Automation of Electric Power Systems, 2022, 46(18): 129-146. [16] 李振坤, 张兆柯, 李景岳, 等. 面向电能量与调频联合市场的虚拟电厂集群投标策略[J/OL]. 电力系统自动化, 1-16 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20250326.1701.004.html. Li Zhenkun, Zhang Zhaoke, Li Jingyue, et al. Bidding strategy of virtual power plant clusters for joint market of electricity energy and frequency regu-lation[J/OL]. Automation of Electric Power Systems, 1-16 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20250326.1701.004.html. [17] 边晓燕, 张璐瑶, 周波, 等. 基于知识图谱的国内外电力市场研究综述[J]. 电工技术学报, 2022, 37(11): 2777-2788. Bian Xiaoyan, Zhang Luyao, Zhou Bo, et al.Review on domestic and international electricity market research based on knowledge graph[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2777-2788. [18] 陈启鑫, 高洪超, 冯成, 等. 虚拟电厂动态构建与可信量化: 理论分析与关键技术[J]. 电力系统自动化, 2022, 46(18): 26-36. Chen Qixin, Gao Hongchao, Feng Cheng, et al.Dynamic construction and trustworthy quantification of virtual power plant: theoretical analysis and key technologies[J]. Automation of Electric Power Systems, 2022, 46(18): 26-36. [19] 陈心宜, 胡秦然, 石庆鑫, 等. 新型电力系统居民分布式资源管理综述[J]. 电力系统自动化, 2024, 48(5): 157-175. Chen Xinyi, Hu Qinran, Shi Qingxin, et al.Review on residential distributed energy resource management in new power system[J]. Automation of Electric Power Systems, 2024, 48(5): 157-175. [20] 田济源, 范帅, 杨冬阳, 等. 考虑负荷静态电压特性的虚拟电厂精准调控方法[J]. 电工技术学报, 2025, 40(15): 4770-4787. Tian Jiyuan, Fan Shuai, Yang Dongyang, et al.Accurate regulation method for virtual power plants considering static voltage load characteristics[J]. Transactions of China Electrotechnical Society, 2025, 40(15): 4770-4787. [21] 王文悦, 刘海涛, 季宇. 虚拟电厂可调空间统一建模及其参与调峰市场的优化运行策略[J]. 电力系统自动化, 2022, 46(18): 74-82. Wang Wenyue, Liu Haitao, Ji Yu.Unified modeling for adjustable space of virtual power plant and its optimal operation strategy for participating in peak-shaving market[J]. Automation of Electric Power Systems, 2022, 46(18): 74-82. [22] 高元昊, 张继行, 赵胤呈, 等. 基于强化学习的虚拟电厂动态聚合及多时间尺度竞价策略[J/OL]. 电力系统自动化, 1-14 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20250205.1327.002.html. Gao Yuanhao, Zhang Jixing, Zhao Yincheng, et al. Reinforcement learning based dynamic aggregation and multi-timescale bidding strategy for virtual power plants[J/OL]. Automation of Electric Power Systems, 1-14 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20250205.1327.002.html. [23] 汪莞乔, 苏剑, 潘娟, 等. 虚拟电厂通信网络架构及关键技术研究展望[J]. 电力系统自动化, 2022, 46(18): 15-25. Wang Wanqiao, Su Jian, Pan Juan, et al.Prospect of research on communication network architecture and key technologies for virtual power plant[J]. Automation of Electric Power Systems, 2022, 46(18): 15-25. [24] 潘超, 李梓铭, 龚榆淋, 等. 计及电力-通信-交通耦合网络不确定性的虚拟电厂鲁棒优化调度[J/OL]. 电工技术学报, 1-16 [2025-04-16]. https://doi.org/10.19595/j.cnki.1000-6753.tces.241189. Pan Chao, Li Ziming, Gong Yulin, et al. Robust optimization scheduling of virtual power plant considering the uncertainty of power-communication-transportation coupling network[J/OL]. Transactions of China Electrotechnical Society, 1-16 [2025-04-16]. https://doi.org/10.19595/j.cnki.1000-6753.tces.241189. [25] 刘金朋, 胡国松, 彭锦淳, 等. 多能互补的虚拟电厂低碳-经济-鲁棒优化调度[J]. 中国电机工程学报, 2024, 44(24): 9718-9731. Liu Jinpeng, Hu Guosong, Peng Jinchun, et al.Low-carbon economic-robust optimization scheduling of multi-energy complementary virtual power plants[J]. Proceedings of the CSEE, 2024, 44(24): 9718-9731. [26] 张钧钊, 姜欣, 段世杰, 等. 虚拟电厂参与电-碳联合市场运行的竞价策略研究[J]. 电力系统保护与控制, 2023, 51(11): 108-118. Zhang Junzhao, Jiang Xin, Duan Shijie, et al.Bidding strategy for a virtual power plant to participate in the power-carbon joint market[J]. Power System Pro-tection and Control, 2023, 51(11): 108-118. [27] 黄宇翔, 黄蔚亮, 牛振勇, 等. 虚拟电厂市场机制与盈利模式介绍及欧洲运行实例分析[J/OL]. 电力系统自动化, 1-14 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20241113.1349.002.html. Huang Yuxiang, Huang Weiliang, Niu Zhenyong, et al. Comparative introduction to virtual power plant profit models and analysis of European operation examples[J/OL]. Automation of Electric Power Systems, 1-14 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20241113.1349.002.html. [28] 谢敏, 黄莹, 卢燕旋, 等. 基于绿电减排量互认的建筑型虚拟电厂电-碳双层协同决策机制[J]. 电力系统自动化, 2024, 48(18): 25-37. Xie Min, Huang Ying, Lu Yanxuan, et al.Electricity-carbon double-layer collaborative decision-making mechanism for building virtual power plant based on mutual recognition of green electricity emission reduction[J]. Automation of Electric Power Systems, 2024, 48(18): 25-37. [29] 昌力, 曹荣章, 吉斌, 等. 电力现货市场交易运营的未来重大需求与关键技术[J]. 电力系统自动化, 2024, 48(4): 34-48. Chang Li, Cao Rongzhang, Ji Bin, et al.Future major demands and key technologies in trading operation of electricity spot market[J]. Automation of Electric Power Systems, 2024, 48(4): 34-48. [30] 王飞, 王歌, 徐飞. 面向系统响应能力提升的虚拟电厂聚合特性及交易机制综述[J]. 电力系统自动化, 2024, 48(18): 87-103. Wang Fei, Wang Ge, Xu Fei.Review on aggregation characteristics and trading mechanisms of virtual power plant for enhancing system response capa-bility[J]. Automation of Electric Power Systems, 2024, 48(18): 87-103. [31] 俞鸿飞, 王韵楚, 吕瑞扬, 等. 考虑灵活爬坡产品的虚拟电厂两阶段分布鲁棒优化运营策略[J]. 电力系统自动化, 2024, 48(14): 16-27. Yu Hongfei, Wang Yunchu, Lü Ruiyang, et al.Two-stage distributionally robust optimization operation strategy of virtual power plants considering flexible ramping products[J]. Automation of Electric Power Systems, 2024, 48(14): 16-27. [32] 刘敦楠, 刘明光, 王文, 等. 充电负荷聚合商参与绿色证书交易的运营模式与关键技术[J]. 电力系统自动化, 2020, 44(10): 1-9. Liu Dunnan, Liu Mingguang, Wang Wen, et al.Operation mode and key technology of charging load aggregator participating in green certificate trading[J]. Automation of Electric Power Systems, 2020, 44(10): 1-9. [33] 仪忠凯, 许银亮, 吴文传. 考虑虚拟电厂多类电力产品的配电侧市场出清策略[J]. 电力系统自动化, 2020, 44(22): 143-151. Yi Zhongkai, Xu Yinliang, Wu Wenchuan.Market clearing strategy for distribution system considering multiple power commodities offered by virtual power plant[J]. Automation of Electric Power Systems, 2020, 44(22): 143-151. [34] 黄大为, 郭念康, 于娜, 等. 面向系统灵活性提升的大用户激励型需求响应优化策略[J]. 电工技术学报, 2024, 39(21): 6778-6792. Huang Dawei, Guo Niankang, Yu Na, et al.Opti-mization strategy for enhancing system flexibility throughincentive demand response of large-scale users[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6778-6792. [35] 王飞, 李美颐, 张旭东, 等. 需求响应资源潜力评估方法、应用及展望[J]. 电力系统自动化, 2023, 47(21):173-191. Wang Fei, Li Meiyi, Zhang Xudong, et al.Assessment methods for demand response resource potential and their application and prospect[J]. Automation of Elec-tric Power Systems, 2023, 47(21): 173-191. [36] 张卫国, 徐青山, 陈堃, 等. 考虑电价敏感用户行为的电动汽车虚拟电厂外特性[J]. 高电压技术, 2023, 49(4): 1372-1379. Zhang Weiguo, Xu Qingshan, Chen Kun, et al.External characteristics of electric vehicle virtual power plant considering electricityprice-sensitive user behavior[J]. High Voltage Engineering, 2023, 49(4): 1372-1379. [37] 李翼成, 赵钰婷, 崔杨, 等. 考虑充放电策略的换电站与风电-碳捕集虚拟电厂的低碳经济调度[J]. 电力自动化设备, 2023, 43(6): 27-36. Li Yicheng, Zhao Yuting, Cui Yang, et al.Low-carbon economic dispatching of battery swapping station and wind power carbon capture virtual power plant considering charging and discharging strategy[J]. Automation of Electric Power Systems, 2023, 43(6): 27-36. [38] 王秋杰, 亓浩, 谭洪, 等. 考虑碳市场风险的热电联产虚拟电厂低碳调度[J]. 电力自动化设备, 2024, 44(10): 8-15. Wang Qiujie, Qi Hao, Tang Hong, et al.Low-carbon scheduling of CHP virtual power plant considering carbon market risk[J]. Automation of Electric Power Systems, 2024, 44(10): 8-15. [39] 罗桓桓, 王昊, 葛维春, 等. 考虑报价监管的动态调峰辅助服务市场竞价机制设计[J]. 电工技术学报, 2021, 36(9): 1935-1947, 1955. Luo Huanhuan, Wang Hao, Ge Weichun, et al.Design of dynamic peak regulation ancillary service market-bidding mechanism considering quotation super-vision[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1935-1947, 1955. [40] 王洪坤, 王守相, 潘志新, 等. 含高渗透分布式电源配电网灵活性提升优化调度方法[J]. 电力系统自动化, 2018, 42(15): 86-93. Wang Hongkun, Wang Shouxiang, Pan Zhixin, et al.Optimized dispatching method for flexibility impro-vement of distribution network with high-penetration distributed generation[J]. Automation of Electric Power Systems, 2018, 42(15): 86-93. [41] 许星原, 陈皓勇, 黄宇翔, 等. 虚拟电厂市场化交易中的挑战、策略与关键技术[J]. 发电技术, 2023, 44(6): 745-757. Xu Xingyuan, Chen Haoyong, Huang Yuxiang, et al.Challenges, strategies and key technologies for virtual power plants in market trading[J]. Power Generation Technology, 2023, 44(6): 745-757. [42] 曹永吉, 张恒旭, 施啸寒, 等. 规模化分布式能源参与大电网安全稳定控制的机制初探[J]. 电力系统自动化, 2021, 45(18): 1-8. Cao Yongji, Zhang Hengxu, Shi Xiaohan, et al.Preliminary study on participation mechanism of large-scale distributed energy resource in security and stability control of large power grid[J]. Automation of Electric Power Systems, 2021, 45(18): 1-8. [43] 董联鑫, 范帅, 王治华, 等. 大规模变频空调的可信聚合优化与自适应分散协调方法[J]. 电力系统自动化, 2024, 48(16): 109-122. Dong Lianxin, Fan Shuai, Wang Zhihua, et al.Credible aggregation optimization and adaptive decentralized coordination method for large-scale inverter air conditioning[J]. Automation of Electric Power Systems, 2024, 48(16): 109-122. [44] 师阳, 李宏伟, 陈继开, 等. 计及激励型需求响应的热电互联虚拟电厂优化调度[J]. 太阳能学报, 2023, 44(4): 349-358. Shi Yang, Li Hongwei, Chen Jikai, et al.Optimal scheduling of thermoelectric interconnection virtual power plant considerign incentive demand response[J]. Acta Energiae Solaris Sinica, 2023, 44(4): 349-358. [45] 周亦洲, 吴俊钊, 孙国强, 等. 面向多级电-碳耦合市场的虚拟电厂两阶段鲁棒交易策略[J]. 电力系统自动化, 2024, 48(18): 38-46. Zhou Yizhou, Wu Junzhao, Sun Guoqiang, et al.Two-stage robust trading strategy for virtual power plant in multi-levelelectricity-carbon coupling market[J]. Automation of Electric Power Systems, 2024, 48(18): 38-46. [46] 刘东奇, 曾祥君, 王耀南. 边缘计算架构下配电台区虚拟电站控制策略[J]. 电工技术学报, 2021, 36(13): 2852-2860, 2870. Liu Dongqi, Zeng Xiangjun, Wang Yaonan.Control strategy of virtual power station in distribution trans-former area under edge computing architecture[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2852-2860, 2870. [47] 韦立坤, 赵波, 吴红斌, 等. 虚拟电厂下计及大规模分布式光伏的储能系统配置优化模型[J]. 电力系统自动化, 2015, 39(23): 66-74. Wei Likun, Zhao Bo, Wu Hongbin, et al.Optimal allocation model of energy storage system in virtual power plant environment with a high penetration of distributed photovoltaic generation[J]. Automation of Electric Power Systems, 2015, 39(23): 66-74. [48] 马瑞, 金艳, 刘鸣春. 基于机会约束规划的主动配电网分布式风光双层优化配置[J]. 电工技术学报, 2016, 31(3): 145-154. Ma Rui, Jin Yan, Liu Mingchun.Bi-level optimal configuration of distributed wind and photovoltaic generations in active distribution network based on chance constrained programming[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 145-154. [49] 林固静, 高赐威, 宋梦, 等. 含通信基站备用储能的虚拟电厂构建及调度方法[J]. 电力系统自动化, 2022, 46(18): 99-107. Lin Gujing, Gao Ciwei, Song Meng, et al.Con-struction and dispatch method of virtual power plant with backup energy storage incommunication base stations[J]. Automation of Electric Power Systems, 2022, 46(18): 99-107. [50] 张天策, 李庚银, 王剑晓, 等. 基于可行域投影理论的新能源电力系统协同运行方法[J]. 电工技术学报, 2024, 39(9): 2784-2796. Zhang Tiance, Li Gengyin, Wang Jianxiao, et al.Coordinated operation method of renewable energy power systems based on feasible region projection theory[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2784-2796. [51] 孙华鹏, 丁孝华, 吴志, 等. 计及自动电压控制系统限值优化调整的配电网调压策略[J/OL]. 电力系统自动化, 1-13 [2024-07-09]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240325.1655.005.html. Sun Huapeng, Ding Xiaohua, Wu Zhi, et al. Voltage regulation strategy for distributed generation con-sidering optimized adjustment of AVC system limits[J/OL]. Automation of Electric Power Systems, 1-13 [2024-07-09]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240325.1655.005.html. [52] 李彬, 郝一浩, 祁兵, 等. 支撑虚拟电厂互动的信息通信关键技术研究展望[J]. 电网技术, 2022, 46(5): 1761-1770. Li Bin, Hao Yihao, Qi Bing, et al.Key information communication technologies supporting virtual power plant interaction[J]. Power System Technology, 2022, 46(5): 1761-1770. [53] 黄宇翔, 陈皓勇, 牛振勇, 等. 基于“能量-信息-价值”三层网络的虚拟电厂架构及运行关键技术综述[J]. 电力系统保护与控制, 2024, 52(24): 169-187. Huang Yuxiang, Chen Haoyong, Niu Zhenyong, et al.A review of virtual power plant architecture and key operational technologies based on a “energy-information-value” three-layer network[J]. Power System Pro-tection and Control, 2024, 52(24): 169-187. [54] 朱斌, 刘东, 刘天元, 等. 边缘计算在电力系统供需互动应用的研究进展与展望[J]. 电网技术, 2024, 48(10): 4327-4341. Zhu Bin, Liu Dong, Liu Tianyuan, et al.Research progresses and prospects on application of edge computing in power system supply-demand inte-raction[J]. Power System Technology, 2024, 48(10): 4327-4341. [55] 贾晓强, 杨永标, 杜姣, 等. 气候变化条件下基于智能预测模型的虚拟电厂不确定性运行优化研究[J]. 发电技术, 2023, 44(6): 790-799. Jia Xiaoqiang, Yang Yongbiao, Du Jiao, et al.Study on uncertainty operation optimization of virtual power plant based on intelligent prediction model under climate change[J]. Power Generation Technology, 2023, 44(6): 790-799. [56] 严兴煜, 高赐威, 陈涛, 等. 数字孪生虚拟电厂系统框架设计及其实践展望[J]. 中国电机工程学报, 2023, 43(2): 604-619. Yan Xingyu, Gao Ciwei, Chen Tao, et al.Framework design and application prospect for digital twin virtual power plant system[J]. Proceedings of the CSEE, 2023,43(2): 604-619. [57] 李昭昱, 艾芊, 张宇帆, 等. 数据驱动技术在虚拟电厂中的应用综述[J]. 电网技术, 2020, 44(7): 2411-2419. Li Zhaoyu, Ai Qian, Zhang Yufan, et al.Application of data-driven technology in virtual power plant[J]. Power System Technology, 2020, 44(7): 2411-2419. [58] 郭少勇, 刘岩, 邵苏杰, 等. 新型电力系统数据跨域流通泛安全边界防护技术[J]. 电力系统自动化, 2024, 48(6): 96-111. Guo Shaoyong, Liu Yan, Shao Sujie, et al.Ubiquitous security boundary protection technology for cross-domain datacirculation in new power system[J]. Automation of Electric Power Systems, 2024, 48(6): 96-111. [59] 栾文鹏, 李培琳, 赵博超, 等. 考虑隐私保护的虚拟电厂内部交易决策优化[J]. 电力系统自动化, 2024, 48(18): 158-166. Luan Wenpeng, Li Peilin, Zhao Bochao, et al.Opti-mization of internal transaction decisions in virtual power plant considering privacy preservation[J]. Automation of Electric Power Systems, 2024, 48(18): 158-166. [60] 胡金炜, 张玉健, 蔡莹, 等. 虚拟电厂网络安全研究综述及展望[J/OL]. 中国电机工程学报, 1-23 [2025-04-16]. https://doi.org/10.13334/j.0258-8013.pcsee.232216. Hu Jinwei, Zhang Yujian, Cai Ying, et al.Review and prospect on cyber security of virtual power plant[J/OL]. Proceedings of the CSEE, 1-23 [2025-04-16].https://doi.org/10.13334/j.0258-8013.pcsee.232216. [61] 左娟, 艾芊, 王文博, 等. 虚拟电厂标准化现状及体系架构设计[J/OL]. 电力系统自动化, 1-13 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20250326.1417.002.html. Zuo Juan, Ai Qian, Wang Wenbo, et al. Standardi-zation status and system architecture design of virtual power plant[J/OL]. Automation of Electric Power Systems, 1-13 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20250326.1417.002.html. [62] 王帝, 艾芊, 余涛, 等. 虚拟电厂可信交易的技术难点与解决方案[J/OL]. 电力系统自动化, 1-18 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20241030.1550.006.html. Wang Di, Ai Qian, Yu Tao, et al. The Technical challenges and solutions for trusted transactions in virtual power plants[J/OL]. Automation of Electric Power Systems, 1-18 [2025-04-16]. http://kns.cnki.net/kcms/detail/32.1180.TP.20241030.1550.006.html. |
|
|
|