|
|
Transient Power Angle Instability Mechanism and Stability Margin Analysis of Synchronous Condenser Co-Located with Renewable Energy Base Based on Equivalent Synchronous Generator |
Shan Yongpeng1, Liu Xinyu2, Wang Ying3, Zheng Di4, Xin Huanhai1,2,5 |
1. Polytechnic Institute Zhejiang University Hangzhou 310015 China; 2. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 3. Northwest Branch of State Grid Cooperation of China Xi'an 710048 China; 4. College of Mechanical and Electrical Engineering China Jiliang University Hangzhou 310018 China; 5. Zhejiang Key Laboratory of Renewable Energy Electrical Technology and System Hangzhou 310027 China |
|
|
Abstract Configuring synchronous condensers (SCs) in large renewable energy base is an effective technical solution to improve the carrying capacity of renewable energy. However, there is a risk of transient power angle instability of the SC in this scheme. Existing literatures have analyzed the transient instability of the SC under specific operating conditions, but they have not comprehensively considered the influence of system parameters on the power angle characteristics of the SC, resulting in a lack of systematic understanding of the transient instability mechanism of the SC under different instability forms. In order to solve the above problems, this paper intends to summarize and analyze the transient instability mechanism behind the different instability forms of the SC based on the equivalent synchronous generator model, quantify the change boundary of the instability forms of the SC and the transient stability margin of the system under the different instability forms by drawing on the analysis methods of transient stability of the traditional synchronous generator. Firstly, the power angle characteristics of the SC are analyzed based on the equivalent model of the associated system of a renewable energy base co-located with a SC and the Thévenin equivalent method. Subsequently, the active power transfer relationship between the equipment and the grid is analyzed, and the equivalent synchronous generator modeling method is provided. Secondly, the energy function of the associated system is developed based on the equivalent synchronous generator model and the energy function of the traditional synchronous generator. The energy conversion process of the system during the transient period is analyzed, and at the same time, the transient instability forms and mechanisms of the SC are summarized and revealed. Thirdly, based on the unbalanced power borne by the rotor during the fault period, the boundary conditions leading to changes in the instability forms of the SC are quantified. The transient stability margin of the system under different instability forms are derived based on the energy function and the critical clearance time (CCT), and the influence of the system parameters on the instability forms and transient stability margin of the SC is analyzed. Finally, the correctness of the proposed instability mechanisms and the analysis of the influencing factors are verified through electromagnetic transient simulations. The following conclusions can be drawn: (1) Under different operating conditions, there are two types of instability forms of the SC: first-swing accelerated instability and first-swing decelerated and second-swing accelerated instability. The former is similar to the transient instability process of the traditional synchronous generator. The latter accumulates potential energy in the first swing stage and converts the potential energy into kinetic energy in the second swing stage. (2) The transient stability boundaries of the SC under the two types of instability forms are different. In the first-swing instability form, there is one CCT, and the system is unstable when the fault clearance time is larger than the CCT. In the second-swing instability form, there are two CCTs, and the system is unstable when the fault clearance time is in the middle of the two CCTs. (3) Since reducing the unbalanced power borne by the SC during the fault helps improve the transient stability of the system, renewable energy should adjust its power output by reducing active power and increasing reactive power under the first-swing instability form, while increasing active power and reducing reactive power under the second-swing instability form. In addition, increasing the capacity proportion of the SC or improving system strength will help improve the transient stability of the SC.
|
Received: 27 September 2024
|
|
|
|
|
[1] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69. Shu Yinbiao, Chen Guoping, He Jingbo, et al.Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69. [2] 国家发展改革委, 国家能源局, 国家数据局. 《加快构建新型电力系统行动方案(2024—2027年)》答记者问[J]. 电力设备管理, 2024(15): 7-8. [3] 胡光, 高晖胜, 辛焕海, 等. 考虑电压动态的电力系统频率强度量化方法[J]. 电力系统自动化, 2024, 48(8): 67-78. Hu Guang, Gao Huisheng, Xin Huanhai, et al.Quantification method for power system frequency strength considering voltage dynamics[J]. Automation of Electric Power Systems, 2024, 48(8): 67-78. [4] 杨金洲, 李业成, 熊鸿韬, 等. 新能源接入的受端电网暂态电压失稳高风险故障快速筛选[J]. 电工技术学报, 2024, 39(21): 6746-6758. Yang Jinzhou, Li Yecheng, Xiong Hongtao, et al.A fast screening method for the high-risk faults with transient voltage instability in receiving-end power grids interconnected with new energy[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6746-6758. [5] 马富艺龙, 辛焕海, 刘晨曦, 等. 新能源基地柔性直流送出系统小扰动电压支撑强度评估[J]. 电工技术学报, 2023, 38(21): 5758-5770, 5938. Ma Fuyilong, Xin Huanhai, Liu Chenxi, et al.Small-disturbance system voltage support strength assessment method for renewables VSC-HVDC delivery system[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5758-5770, 5938. [6] 江一航, 赵书强, 王慧, 等. 计及风电、调相机支撑特性的频率安全约束分布鲁棒机组组合调度方法[J]. 电工技术学报, 2025, 40(1): 80-95. Jiang Yihang, Zhao Shuqiang, Wang Hui, et al.Distributionally robust frequency constrained unit commitment with frequency support of wind power and synchronous condenser[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 80-95. [7] 郭强, 李志强. 同步调相机发展综述[J]. 中国电机工程学报, 2023, 43(15): 6050-6064. Guo Qiang, Li Zhiqiang.Summarization of synchronous condenser development[J]. Proceedings of the CSEE, 2023, 43(15): 6050-6064. [8] 王雅婷, 张一驰, 周勤勇, 等. 新一代大容量调相机在电网中的应用研究[J]. 电网技术, 2017, 41(1): 22-28. Wang Yating, Zhang Yichi, Zhou Qinyong, et al.Study on application of new generation large capacity synchronous condenser in power grid[J]. Power System Technology, 2017, 41(1): 22-28. [9] 金一丁, 于钊, 李明节, 等. 新一代调相机与电力电子无功补偿装置在特高压交直流电网中应用的比较[J]. 电网技术, 2018, 42(7): 2095-2102. Jin Yiding, Yu Zhao, Li Mingjie, et al.Comparison of new generation synchronous condenser and power electronic reactive-power compensation devices in application in UHV DC/AC grid[J]. Power System Technology, 2018, 42(7): 2095-2102. [10] 林旻威, 温步瀛. 大规模风电接入对电力系统暂态稳定性影响研究综述[J]. 电气技术, 2017, 18(4): 1-8, 38. Lin Minwei, Wen Buying.The overview of influence of large scale wind generation on transient stability of power system[J]. Electrical Engineering, 2017, 18(4): 1-8, 38. [11] 于强, 孙华东, 汤涌, 等. 双馈风电机组接入对电力系统功角稳定性的影响[J]. 电网技术, 2013, 37(12): 3399-3405. Yu Qiang, Sun Huadong, Tang Yong, et al.Impact on angle stability of power system with doubly fed induction generators connected to grid[J]. Power System Technology, 2013, 37(12): 3399-3405. [12] 王清, 薛安成, 郑元杰, 等. 双馈型风电集中接入对暂态功角稳定的影响分析[J]. 电网技术, 2016, 40(3): 875-881. Wang Qing, Xue Ancheng, Zheng Yuanjie, et al.Impact of DFIG-based wind power integration on the transient stability of power systems[J]. Power System Technology, 2016, 40(3): 875-881. [13] 牟澎涛, 赵冬梅, 王嘉成. 大规模风电接入对系统功角稳定影响的机理分析[J]. 中国电机工程学报, 2017, 37(5): 1325-1334. Mu Pengtao, Zhao Dongmei, Wang Jiacheng.Influence mechanism analysis of large-scale wind power integration on power system angle stability[J]. Proceedings of the CSEE, 2017, 37(5): 1325-1334. [14] 汤蕾, 沈沉, 张雪敏. 大规模风电集中接入对电力系统暂态功角稳定性的影响(一): 理论基础[J]. 中国电机工程学报, 2015, 35(15): 3832-3842. Tang Lei, Shen Chen, Zhang Xuemin.Impact of large-scale wind power centralized integration on transient angle stability of power systems: part Ⅰ: theoretical foundation[J]. Proceedings of the CSEE, 2015, 35(15): 3832-3842. [15] 汤蕾, 沈沉, 张雪敏. 大规模风电集中接入对电力系统暂态功角稳定性的影响(二): 影响因素分析[J]. 中国电机工程学报, 2015, 35(16): 4043-4051. Tang Lei, Shen Chen, Zhang Xuemin.Impact of large-scale wind power centralized integration on transient angle stability of power systems: part Ⅱ: factors affecting transient angle stability[J]. Proceedings of the CSEE, 2015, 35(16): 4043-4051. [16] 于珍, 沈沉, 张雪敏. 双馈风机故障穿越后功率恢复速率对系统暂态稳定的影响分析[J]. 中国电机工程学报, 2018, 38(13): 3781-3791, 4019. Yu Zhen, Shen Chen, Zhang Xuemin.Analysis on the impact of post-fault power recovery speed of doubly-fed induction generators on power system transient stability[J]. Proceedings of the CSEE, 2018, 38(13): 3781-3791, 4019. [17] 张锋, 陈武晖, 康佳乐, 等. 双馈风电场故障穿越控制策略对风火打捆系统暂态稳定性影响及提升控制策略研究[J]. 电工技术学报, 2025, 40(3): 717-729. Zhang Feng, Chen Wuhui, Kang Jiale, et al.Research on the effect of fault ride-through control strategy of doubly-fed wind farms on transient stability of wind-fire bundling system and enhancement control strategy[J]. Transactions of China Electrotechnical Society, 2025, 40(3): 717-729. [18] 姜惠兰, 吴玉璋, 周照清, 等. 含双馈风力发电场的多机系统暂态功角稳定性分析方法[J]. 中国电机工程学报, 2018, 38(4): 999-1005, 1276. Jiang Huilan, Wu Yuzhang, Zhou Zhaoqing, et al.A method to analyze the transient angle stability of multi-machine system with DFIG-based wind farm[J]. Proceedings of the CSEE, 2018, 38(4): 999-1005, 1276. [19] 姜惠兰, 周照清, 蔡继朝. 风电接入比例对电力系统暂态功角稳定性影响的分析方法[J]. 电力自动化设备, 2020, 40(7): 53-67. Jiang Huilan, Zhou Zhaoqing, Cai Jizhao.Analysis method of influence of wind power access proportion on transient power angle stability of power system[J]. Electric Power Automation Equipment, 2020, 40(7): 53-67. [20] 王伟, 周少泽, 黄萌, 等. 构网型技术:演进历程、功能定位及应用展望[J]. 电力系统自动化, 2025, 49(1): 1-13. Wang Wei, Zhou Shaoze, Huang Meng, et al.Grid-forming technologies: evolution history, functional positioning, and application perspectives[J]. Automation of Electric Power Systems, 2025, 49(1): 1-13. [21] Li Mingfei, Quan Xiangjun, Wu Zaijun, et al.Modeling and transient stability analysis of mixed-GFM-GFL-based power system[C]//2021 IEEE Sustainable Power and Energy Conference (iSPEC), Nanjing, China, 2021. [22] 耿华, 何长军, 刘浴霜, 等. 新能源电力系统的暂态同步稳定研究综述[J]. 高电压技术, 2022, 48(9): 3367-3383. Geng Hua, He Changjun, Liu Yushuang, et al.Overview on transient synchronization stability of renewable-rich power systems[J]. High Voltage Engineering, 2022, 48(9): 3367-3383. [23] 黄森, 姚骏, 钟勤敏, 等. 含跟网和构网型新能源发电单元的混联电力系统暂态同步稳定分析[J]. 中国电机工程学报, 2024, 44(21): 8378-8392. Huang Sen, Yao Jun, Zhong Qinmin, et al.Transient synchronization stability analysis of hybrid power system with grid-following and grid-forming renewable energy generation units[J]. Proceedings of the CSEE, 2024, 44(21): 8378-8392. [24] 邱硕, 庄可好, 汤波, 等.基于直流电容自同步的构网型SVG暂态同步稳定分析与提升策略[J/OL]. 电网技术, 2024: 1-15. https://doi.org/10.13335/j.1000-3673.pst.2024.1040. Qiu Shuo, Zhuang Kehao, Tang Bo, et al.Transient synchronous stability analysis and enhancement strategy for DC capacitor self-synchronisation-based constructed grid type SVGs[J/OL]. Power System Technology, 2024: 1-15. https://doi.org/10.13335/j.1000-3673.pst.2024.1040. [25] 沈广进, 辛焕海, 刘昕宇, 等. 大型新能源基地中调相机同步失稳机理与影响因素分析[J]. 电力系统自动化, 2022, 46(20): 100-108. Shen Guangjin, Xin Huanhai, Liu Xinyu, et al.Analysis on synchronization instability mechanism and influence factors for condenser in large-scale renewable energy base[J]. Automation of Electric Power Systems, 2022, 46(20): 100-108. [26] Liu Xinyu, Xin Huanhai, Zheng Di, et al.Transient stability of synchronous condenser co-located with renewable power plants[J]. IEEE Transactions on Power Systems, 2024, 39(1): 2030-2041. [27] 杨松浩, 李秉芳, 赵天骐, 等. 新能源场站分布式同步调相机暂态功角失稳形态及机理[J]. 电力系统自动化, 2023, 47(3): 12-18. Yang Songhao, Li Bingfang, Zhao Tianqi, et al.Transient angle instability mode and mechanism of distributed synchronous condensers in renewable energy station[J]. Automation of Electric Power Systems, 2023, 47(3): 12-18. [28] 赵天骐, 李秉芳, 杨松浩, 等. 新能源场站分布式同步调相机暂态功角稳定性影响因素分析[J]. 电力系统自动化, 2023, 47(16): 114-122. Zhao Tianqi, Li Bingfang, Yang Songhao, et al.Analysis of influence factors for transient rotor-angle stability of distributed synchronous condensers in renewable energy stations[J]. Automation of Electric Power Systems, 2023, 47(16): 114-122. [29] 王彤, 王潇桐, 韩梓畅, 等. 分布式调相机暂态特性分析与暂态功角稳定性机理研究[J]. 电工技术学报, 2025, 40(1): 36-51. Wang Tong Wang Xiaotong Han Zichang, et al. Research on transient characteristic analysis and transient stability mechanism of distributed condenser[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 36-51. [30] Leonard L.电力系统稳定与控制[M]. 李相俊, 李生虎, 金恩淑, 译. 3rd ed. 北京: 机械工业出版社. 2018. [31] 辛焕海, 李子恒, 董炜, 等. 三相变流器并网系统的广义阻抗及稳定判据[J]. 中国电机工程学报, 2017, 37(5): 1277-1293. Xin Huanhai, Li Ziheng, Dong Wei, et al.Generalized-impedance and stability criterion for grid-connected converters[J]. Proceedings of the CSEE, 2017, 37(5): 1277-1293. [32] He Xiuqiang, Geng Hua.Transient stability of power systems integrated with inverter-based generation[J]. IEEE Transactions on Power Systems, 2021, 36(1): 553-556. [33] Zhao Mingquan, Yuan Xiaoming, Hu Jiabing, et al.Voltage dynamics of current control time-scale in a VSC-connected weak grid[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2925-2937. [34] 黄萌, 舒思睿, 李锡林, 等. 面向同步稳定性的电力电子并网变流器分析与控制研究综述[J]. 电工技术学报, 2024, 39(19): 5978-5994. Huang Meng, Shu Sirui, Li Xilin, et al.A review of synchronization-stability-oriented analysis and control of power electronic grid-connected converters[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 5978-5994. [35] 张庆海, 彭楚武, 陈燕东, 等. 一种微电网多逆变器并联运行控制策略[J]. 中国电机工程学报, 2012, 32(25): 126-132, 18. Zhang Qinghai, Peng Chuwu, Chen Yandong, et al.A control strategy for parallel operation of multi-inverters in microgrid[J]. Proceedings of the CSEE, 2012, 32(25): 126-132, 18. [36] 国家市场监督管理总局, 国家标准化管理委员会. 风电场接入电力系统技术规定第1部分:陆上风电: GB/T 19963.1—2021[S]. 北京: 中国标准出版社, 2021. [37] Xin Huanhai, Liu Xinyu, Zheng Di, et al.Risk assessment of post-fault temporary overvoltage using generalized short-circuit ratio[J]. IEEE Transactions on Power Systems, 2024, 39(1): 1837-1849. |
|
|
|