|
|
Analysis of Short-Circuit Current in Flexible DC Converter Stations Considering the Coupling Characteristics of New Energy Sources |
Liu Haolin, Jia Ke, Bi Tianshu, Li Zainan, Sun Junlei |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China |
|
|
Abstract The new energy base is transmitted through flexible direct transmission, and the short-circuit current provided by the flexible direct converter station is affected by the new energy and its own control characteristics, resulting in complex coupling characteristics, making it difficult for existing methods to ensure the accuracy of transient characteristic calculations. The existing methods for analyzing the fault characteristics of flexible DC converter stations can be divided into two categories: electromagnetic transient fine simulation modeling and time-frequency equation calculation methods. In the analytical method based on electromagnetic transient fine simulation modeling, it mainly constructs a fine simulation model in simulation software, and uses the fine model to simulate and analyze the fault characteristics of flexible DC converter stations in different scenarios. However, this type of method essentially uses complex electrical and control characteristics for iterative calculation. Therefore, the time cost required for its calculation is high, and it is not suitable for large-scale research. Moreover, it is difficult to obtain analytical solutions using this type of method, and the mathematical model of the short-circuit current provided by flexible DC converter stations cannot be obtained, lacking theoretical analysis. At the same time, this method cannot simulate and analyze all fault scenarios, making it difficult to provide reference for protection principles. Compared with the method of electromagnetic transient fine simulation modeling, the time-frequency equation calculation method can obtain analytical solutions for flexible DC converter stations. However, existing methods of this kind cannot accurately characterize the short-circuit current characteristics of flexible DC converter stations during the transient phase. In response to the problem of difficulty in analyzing the short-circuit current provided by the flexible DC converter station at the transmission end when the AC transmission line fails in the flexible DC transmission system of the new energy base, this paper proposes a short-circuit current analysis method for the flexible DC converter station at the transmission end that takes into account the coupling characteristics of new energy. The decoupling calculation of the interaction between the flexible DC converter station and the new energy base is achieved by adopting the idea of partition calculation. Based on complex domain mathematical methods, the dq axis component of the flexible DC converter station is decoupled for the calculation and control response process, and the time-domain analytical formula for the short-circuit current of the flexible DC converter station is obtained, which solves the problem that existing methods are difficult to analyze the transient characteristics of the flexible DC converter station. The calculation of the proposed method is verified on the hardware in the loop experimental platform. The accuracy shows that the maximum error of the proposed algorithm is less than 5% in different fault scenarios, Verified the effectiveness of the proposed method.
|
Received: 29 June 2024
|
|
|
|
|
[1] 蔡希鹏, 黄伟煌, 李桂源, 等. 大规模光伏集群经柔性直流构网送出的运行控制技术研究[J]. 中国电机工程学报, 2023, 43(22): 8734-8745. Cai Xipeng, Huang Weihuang, Li Guiyuan, et al.Research on operation control strategy of large-scale photovoltaic cluster transmission via grid-forming VSC-HVDC[J]. Proceedings of the CSEE, 2023, 43(22): 8734-8745. [2] 饶宏, 黄伟煌, 郭知非, 等. 柔性直流输电技术在大电网中的应用与实践[J]. 高电压技术, 2022, 48(9): 3347-3355. Rao Hong, Huang Weihuang, Guo Zhifei, et al.Practical experience of VSC-HVDC transmission in large grid[J]. High Voltage Engineering, 2022, 48(9): 3347-3355. [3] 郑涛, 李紫肖, 陈云飞, 等. 基于等效故障区段的柔性直流输电线路单端量保护方案[J]. 电工技术学报, 2025, 40(3): 771-785. Zheng Tao, Li Zixiao, Chen Yunfei, et al.Single terminal protection scheme for flexible DC transmission lines based on equivalent fault section[J]. Transactions of China Electrotechnical Society, 2025, 40(3): 771-785. [4] 马富艺龙, 辛焕海, 刘晨曦, 等. 新能源基地柔性直流送出系统小扰动电压支撑强度评估[J]. 电工技术学报, 2023, 38(21): 5758-5770, 5938. Ma Fuyilong, Xin Huanhai, Liu Chenxi, et al.Small-disturbance system voltage support strength assessment method for renewables VSC-HVDC delivery system[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5758-5770, 5938. [5] 郑涛, 马家璇, 吕文轩, 等. 基于暂态负序电流积聚量比值的海上风电交流汇集线路保护[J]. 电力系统自动化, 2023, 47(12): 137-144. Zheng Tao, Ma Jiaxuan, Lü Wenxuan, et al.Protection for AC collection line of offshore wind power based on ratio of transient negative-sequence current accumulation[J]. Automation of Electric Power Systems, 2023, 47(12): 137-144. [6] 林思齐, 熊永新, 姚伟, 等. 基于MATLAB/ Simulink的新一代电力系统动态仿真工具箱[J]. 电网技术, 2020, 44(11): 4077-4088. Lin Siqi, Xiong Yongxin, Yao Wei, et al.MATLAB/Simulink-based dynamic simulation toolbox for new generation power system[J]. Power System Technology, 2020, 44(11): 4077-4088. [7] 黄颂开, 徐晋, 汪可友, 等. 基于谐波状态空间模型的MMC解析仿真方法[J]. 中国电机工程学报, 2024, 44(15): 6110-6123. Huang Songkai, Xu Jin, Wang Keyou, et al.MMC analytical simulation method based on harmonic state space model[J]. Proceedings of the CSEE, 2024, 44(15): 6110-6123. [8] 许建中, 王乐, 武董一, 等. 采用子模块相关性坐标变换解耦的混合模块化多电平换流器可靠性建模[J]. 电工技术学报, 2019, 34(18): 3821-3830. Xu Jianzhong, Wang Le, Wu Dongyi, et al.Reliability modeling of hybrid modular multilevel converter using coordinate transformation based on decoupled sub-module correlations[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3821-3830. [9] 刘若平, 屠卿瑞, 李银红, 等. 适用于交流保护整定的MMC-HVDC接入母线故障等效模型[J]. 电力系统自动化, 2019, 43(18): 145-153. Liu Ruoping, Tu Qingrui, Li Yinhong, et al.Equivalent model of MMC-HVDC for AC protection setting with access bus fault[J]. Automation of Electric Power Systems, 2019, 43(18): 145-153. [10] 许建中, 徐义良, 赵禹辰, 等. 多类型子模块MMC电磁暂态通用建模和实现方法[J]. 电网技术, 2019, 43(6): 2039-2048. Xu Jianzhong, Xu Yiliang, Zhao Yuchen, et al.Generalized electromagnetic transient equivalent modeling and implementation of MMC with arbitrary multi-type submodule structures[J]. Power System Technology, 2019, 43(6): 2039-2048. [11] 王洁聪, 刘崇茹, 徐东旭, 等. 基于RTDS的模块化多电平换流器闭锁状态仿真建模方法[J]. 电工技术学报, 2018, 33(16): 3686-3696. Wang Jiecong, Liu Chongru, Xu Dongxu, et al.Simulation method of modular multilevel converter blocking state based on RTDS[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3686-3696. [12] Chiniforoosh S, Jatskevich J, Yazdani A, et al.Definitions and applications of dynamic average models for analysis of power systems[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2655-2669. [13] 贾科, 刘浅, 杨彬, 等. 计及锁相环动态特性的逆变电源故障暂态电流解析[J]. 电网技术, 2021, 45(11): 4242-4250. Jia Ke, Liu Qian, Yang Bin, et al.Transient fault current analysis of the inverter-interfaced renewable energy sources considering the dynamic characteristics of the phase-locked loop[J]. Power System Technology, 2021, 45(11): 4242-4250. [14] 郑黎明, 贾科, 毕天姝, 等. 海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J]. 电力系统保护与控制, 2021, 49(20): 20-32. Zheng Liming, Jia Ke, Bi Tianshu, et al.AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J]. Power System Protection and Control, 2021, 49(20): 20-32. [15] 余越, 王聪博, 沙兆义, 等. 基于矩阵突变特征的风电经柔直送出交流线路保护[J]. 中国电机工程学报, 2023, 43(14): 5441-5450. Yu Yue, Wang Congbo, Sha Zhaoyi, et al.AC transmission line protection for wind farms integrated with VSC-HVDC system based on matrix mutation characteristics[J]. Proceedings of the CSEE, 2023, 43(14): 5441-5450. [16] Zheng Liming, Jia Ke, Yang Bin, et al.Singular value decomposition based pilot protection for transmission lines with converters on both ends[J]. IEEE Transactions on Power Delivery, 2022, 37(4): 2728-2737. [17] 曹润彬, 聂少雄, 芮智, 等. 对称单极柔性直流输电系统不对称交流故障解析模型[J]. 南方电网技术, 2021, 15(8): 48-54, 70. Cao Runbin, Nie Shaoxiong, Rui Zhi, et al.Analytical modeling of asymmetric AC faults in symmetric single-pole MMC-HVDC power transmission system[J]. Southern Power System Technology, 2021, 15(8): 48-54, 70. [18] 秦继朔, 贾科, 杨彬, 等. 风电多端柔性直流并网系统交流送出线故障短路电流解析[J]. 电力系统自动化, 2021, 45(14): 47-55. Qin Jishuo, Jia Ke, Yang Bin, et al.Short-circuit fault current analysis of AC transmission line of MMC-MTDC system for wind power intergration[J]. Automation of Electric Power Systems, 2021, 45(14): 47-55. [19] 温志文, 刘昊霖, 贾科, 等. 风电接入海上换流站的交流汇集出线高速保护[J]. 中国电机工程学报, 2024, 44(12): 4775-4788. Wen Zhiwen, Liu Haolin, Jia Ke, et al.High speed protection of AC convergence outgoing lines for wind power integration into offshore converter stations[J]. Proceedings of the CSEE, 2024, 44(12): 4775-4788. [20] 孔祥平, 张哲, 尹项根, 等. 含逆变型分布式电源的电网故障电流特性与故障分析方法研究[J]. 中国电机工程学报, 2013, 33(34): 65-74, 13. Kong Xiangping, Zhang Zhe, Yin Xianggen, et al.Study on fault current characteristics and fault analysis method of power grid with inverter interfaced distributed generation[J]. Proceedings of the CSEE, 2013, 33(34): 65-74, 13. [21] 孔祥平, 袁宇波, 黄浩声, 等. 光伏电源故障电流的暂态特征及其影响因素[J]. 电网技术, 2015, 39(9): 2444-2449. Kong Xiangping, Yuan Yubo, Huang Haosheng, et al.Fault current transient features and its related impact factors of PV generator[J]. Power System Technology, 2015, 39(9): 2444-2449. [22] 国家市场监督管理总局, 国家标准化管理委员会. 风电场接入电力系统技术规定第1部分:陆上风电: GB/T 19963.1—2021[S]. 北京: 中国标准出版社, 2021. [23] 郑涛, 章若竹, 吕文轩, 等. 故障主动控制下计及分布电容影响的海上风电交流汇集线路时域距离保护[J]. 电工技术学报, 2025, 40(1): 122-138. Zheng Tao, Zhang Ruozhu, Lü Wenxuan, et al.Time domain distance protection for offshore wind power AC collection lines considering the influence of distributed capacitance under active fault control[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 122-138. [24] 贾科, 董学正, 毕天姝, 等. 接入换流站的新能源交流汇集系统低电压穿越方法[J]. 电网技术, 2024, 48(6): 2385-2393. Jia Ke, Dong Xuezheng, Bi Tianshu, et al.Low-voltage ride-through method of AC collection system for renewable energy connected to converter station[J]. Power System Technology, 2024, 48(6): 2385-2393. [25] Hou Junjie, Gao Qiangqiang, Song Guobing, et al.Research on fault control strategy for two terminal weak feed systems considering step-down V/f control[C]//2023 IEEE International Conference on Advanced Power System Automation and Protection (APAP), Xuchang, China, 2023: 150-155. [26] Huo Junda, Wang Yi, Meng Jianhui, et al.Current limiting control strategy of grid-forming MMC based on adaptive virtual impedance[C]//2023 5th International Conference on Power and Energy Technology (ICPET), Tianjin, China, 2023: 508-513. |
|
|
|