|
|
A Review of the Research on the Position Detection of Dynamic Wireless Power Transfer for Electric Vehicles |
Gao Xin1,2, Si Zhelun1, Zhu Chunbo1,2 |
1. School of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China; 2. Zhengzhou Research Institute of Harbin Institute of Technology Zhengzhou 450000 China |
|
|
Abstract Dynamic wireless power transfer technology provides a disruptive solution for the energy supply mode of electric vehicles. To improve the system's efficiency and safety, a segmented rail array arrangement and flexible switching based on vehicle position have become a necessary means. This paper summarizes the development status and vehicle positioning method of dynamic wireless power transfer technology for electric vehicles, reviews the application and innovation of position detection technology, and discusses the development process, current technical implementation, and key problems of position detection technology with auxiliary detection device and longitudinal position detection technology without auxiliary detection device. It is concluded that the position detection technology requires further improvement in detection accuracy, response speed, cost, and environmental adaptability. Future research directions are prospectively outlined to provide a reference for the research of position detection technology in dynamic wireless power supply systems. Firstly, the positioning mode of the vehicle at this stage comprises global navigation satellite system (GNSS) positioning, inertial navigation system (INS) positioning, map matching positioning, wireless communication positioning, magnetic positioning, and visual positioning, generally with issues related to positioning accuracy and real-time performance. Directly applying it to the position detection of a dynamic wireless power transfer system is challenging, and various methods must be fused. Secondly, the position detection technology of a dynamic wireless power transfer system can be divided into longitudinal/transverse position detection technology with auxiliary detection devices and longitudinal position detection technology without auxiliary detection devices. The technology of unassisted detection devices has cost and power consumption advantages, but its adaptability in complex environments is slightly lower than that of assisted device technology. The technology of auxiliary detection devices offers high accuracy and reliability, making it suitable for various complex environments. However, it often requires a certain amount of space and increases system costs. Lastly, the maturity and application of position detection technology in dynamic wireless power transfer systems must solve the problems of detection accuracy, response speed, cost, and environmental adaptability. These can be considered in studying lateral position detection technology, which does not require auxiliary detection devices, offers full integration with vehicle positioning systems, and leverages a combination of big data and intelligent algorithms.
|
Received: 01 December 2024
|
|
|
|
|
[1] Ruddell S, Madawala U K, Thrimawithana D J.A wireless EV charging topology with integrated energy storage[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 8965-8972. [2] 孙天, 宋贝贝, 崔淑梅, 等. 电动汽车无线充电系统接收端位置大范围唯一性辨识系统设计[J]. 电工技术学报, 2024, 39(21): 6626-6635, 6792. Sun Tian, Song Beibei, Cui Shumei, et al.Design of accurate position detection system applied to large misalignment range for electric vehicle wireless charging system[J]. Transactions of China Elec- trotechnical Society, 2024, 39(21): 6626-6635, 6792. [3] Geng Yuyu, Yang Zhongping, Lin Fei.Design and control for catenary charged light rail vehicle based on wireless power transfer and hybrid energy storage system[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7894-7903. [4] Ruddell S, Madawala U K, Thrimawithana D J.Dynamic WPT system for EV charging with integrated energy storage[J]. IET Power Electronics, 2019, 12(10): 2660-2668. [5] Nguyen H T, Alsawalhi J Y, Al Hosani K, et al.Review map of comparative designs for wireless high-power transfer systems in EV applications: maximum efficiency, ZPA, and CC/CV modes at fixed resonance frequency independent from coupling coefficient[J]. IEEE Transactions on Power Elec- tronics, 2022, 37(4): 4857-4876. [6] Jeong S, Jang Y J, Kum D, et al.Charging automation for electric vehicles: is a smaller battery good for the wireless charging electric vehicles?[J]. IEEE Transa- ctions on Automation Science and Engineering, 2019, 16(1): 486-497. [7] Wang Hongjie, Pratik U, Jovicic A, et al.Dynamic wireless charging of medium power and speed electric vehicles[J]. IEEE Transactions on Vehicular Tech- nology, 2021, 70(12): 12552-12566. [8] 刘祺, 薛明, 章鹏程, 等. 基于无线充电系统的多模块扩展均压技术研究与设计[J]. 电工技术学报, 2024, 39(22): 6980-6989. Liu Qi, Xue Ming, Zhang Pengcheng, et al.Modular extensible voltage equalization based on wireless charging system[J]. Transactions of China Electro- technical Society, 2024, 39(22): 6980-6989. [9] 孙瀛, 周天, 宋凯, 等. 提升无线充电异物检测系统灵敏度的高阶复合谐振拓扑[J]. 电工技术学报, 2023, 38(6): 1541-1552. Sun Ying, Zhou Tian, Song Kai, et al.Design of high- order composite resonant topology for improving the sensitivity of foreign object detection system[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1541-1552. [10] 李中启, 张晨曦, 王建斌, 等. 基于变频重构S/SP拓扑的无线电能传输系统恒流恒压研究[J]. 电工技术学报, 2024, 39(15): 4718-4732. Li Zhongqi, Zhang Chenxi, Wang Jianbin, et al.Research on constant current and constant voltage of WPT system based on variable frequency recon- figuration S/SP topology[J]. Transactions of China Electrotechnical Society, 2024, 39(15): 4718-4732. [11] 徐先峰, 吴慧玲, 杨雄政, 等. 空间约束下电动汽车无线充电系统磁耦合结构优化[J]. 电工技术学报, 2024, 39(12): 3581-3588. Xu Xianfeng, Wu Huiling, Yang Xiongzheng, et al.Optimization of magnetically coupled structure of wireless charging system for electric vehicles under space constraint[J]. Transactions of China Elec- trotechnical Society, 2024, 39(12): 3581-3588. [12] 陈志鑫, 张献, 沙琳, 等. 基于频率调节的电动汽车无线充电互操作性提升方法研究[J]. 电工技术学报, 2023, 38(5): 1237-1247. Chen Zhixin, Zhang Xian, Sha Lin, et al.Research on improving interoperability of electric vehicle wireless power transfer based on frequency adjustment[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1237-1247. [13] 闻枫, 王磊, 张翔, 等. 阵列式无线电能传输系统自适应区域划分定位策略[J]. 电工技术学报, 2024, 39(24): 7674-7687. Wen Feng, Wang Lei, Zhang Xiang, et al.Adaptive region division positioning strategy for array-based wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7674-7687. [14] Wang Yuntao, Luan H T, Su Zhou, et al.A secure and efficient wireless charging scheme for electric vehicles in vehicular energy networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 1491-1508. [15] Machura P, De Santis V, Li Quan.Driving range of electric vehicles charged by wireless power transfer[J]. IEEE Transactions on Vehicular Tech- nology, 2020, 69(6): 5968-5982. [16] 葛凯梁, 仇钧, 朱海. 基于中继线圈的电动汽车静态无线充电系统抗偏移性能提升研究[J]. 电源学报, 2023, 21(6): 35-42. Ge Kailiang, Qiu Jun, Zhu Hai.Research on improvement of anti-misalignment capacity of static wireless charging system for electric vehicles based on relay coil[J]. Journal of Power Supply, 2023, 21(6): 35-42. [17] 赵玮, 曲小慧, 连静, 等. 一种具有高抗偏移特性的通用复合式IPT耦合器[J]. 中国电机工程学报, 2022, 42(20): 7343-7352. Zhao Wei, Qu Xiaohui, Lian Jing, et al.A universal hybrid IPT coupler with high tolerance to pad misalignment[J]. Proceedings of the CSEE, 2022, 42(20): 7343-7352. [18] 胡鹏, 杨庆胜, 王宁, 等. SS型PT对称磁耦合无线电能传输系统特性分析[J]. 电源学报, 2023, 21(6): 43-48. Hu Peng, Yang Qingsheng, Wang Ning, et al.Characteristic analysis of SS topological PT symmet- rical magnetic coupling wireless power transfer system[J]. Journal of Power Supply, 2023, 21(6): 43-48. [19] 李志文, 葛恩顺, 马川, 等. 一种双L型抗偏移无线传能线圈及谐振网络电路[J]. 电工技术, 2024(15): 55-57. Li Zhiwen, Ge Enshun, Ma Chuan, et al.A double L-shaped anti-offset wireless power transmission coil and resonant network circuit[J]. Electric Engineering, 2024(15): 55-57. [20] Dayerizadeh A, Feng Hao, Lukic S M.Dynamic wireless charging: reflexive field containment using saturable inductors[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1784-1792. [21] 张俊岭, 尹朋, 王继伟, 等. 无线电能传输中继线圈位置特性分析[J]. 电气传动, 2025, 55(2): 20-25. Zhang Junling, Yin Peng, Wang Jiwei, et al.Analysis of the position characteristics of wireless power transmission with relay coils[J]. Electric Drive, 2025, 55(2): 20-25. [22] Wang Zhiyuan, Cui Shumei, Song Beibei, et al.Comprehensive optimisation and comparison of multiphase receiver for dynamic wireless charging system[J]. IET Power Electronics, 2019, 12(10): 2475-2484. [23] Yin Jialin, Mekhilef S, Darvish P, et al.A new cross-overlapped decoupling coil structure for EV dynamic inductive wireless charging system[J]. IEEE Transactions on Industrial Electronics, 2025, 72(2): 1314-1324. [24] 苏玉刚, 邓晨琳, 胡宏晟, 等. 信号与能量极板层叠方式下的电场耦合式无线电能传输系统[J]. 中国电机工程学报, 2024, 44(19): 7762-7772. Su Yugang, Deng Chenlin, Hu Hongsheng, et al.Electric-field coupled wireless power transfer system with signal plate and energy plate stacking mode[J]. Proceedings of the CSEE, 2024, 44(19): 7762-7772. [25] Wang C S, Stielau O H, Covic G A.Design con- siderations for a contactless electric vehicle battery charger[J]. IEEE Transactions on Industrial Elec- tronics, 2005, 52(5): 1308-1314. [26] Budhia M, Covic G, Boys J.Magnetic design of a three-phase inductive power transfer system for roadway powered electric vehicles[C]//2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 2010: 1-6. [27] Elliott G A J, Raabe S, Covic G A, et al. Multiphase pickups for large lateral tolerance contactless power- transfer systems[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1590-1598. [28] Elliott G A J, Covic G A, Kacprzak D, et al. A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3389-3391. [29] Raabe S, Covic G A.Practical design considerations for contactless power transfer quadrature pick-ups[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 400-409. [30] Budhia M, Boys J T, Covic G A, et al.Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328. [31] Nagendra G R, Covic G A, Boys J T.Sizing of inductive power pads for dynamic charging of EVs on IPT highways[J]. IEEE Transactions on Transportation Electrification, 2017, 3(2): 405-417. [32] Zaheer A, Covic G A, Kacprzak D.A bipolar pad in a 10-kHz 300-W distributed IPT system for AGV applications[J]. IEEE Transactions on Industrial Electronics, 2013, 61(7): 3288-3301. [33] Kim S, Covic G A, Boys J T.Tripolar pad for inductive power transfer systems for EV charging[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5045-5057. [34] Qualcomm’s Dynamic Charging Tech Could Make Electric Vehicles Mainstream[EB/OL]. https://www.alphr.com/cars/1005950. [35] Choi S Y, Gu B W, Jeong S Y, et al.Advances in wireless power transfer systems for roadway-powered electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 18-36. [36] WAVE Official Website of WAVE[EB/OL]. http://www.waveipt.com/projects/54f3ed317d08dc1700e6a635. [37] Zhang Shiyao, Yu J J Q. Electric vehicle dynamic wireless charging system: optimal placement and vehicle-to-grid scheduling[J]. IEEE Internet of Things Journal, 2021, 9(8): 6047-6057. [38] 解决电动汽车续航焦虑: Stellantis集团开通无线充电测试公路,目前只有1公里[EB/OL]. https://www.ithome.com/0/590/947.htm. [39] 王杰. 电动汽车动态无线充电功率波动性研究[D]. 天津: 天津工业大学, 2020. Wang Jie.Study on power fluctuation of dynamic wireless charging for electric vehicles[D]. Tianjin: Tianjin Polytechnic University, 2020. [40] 我所研发的60kW电动汽车移动式无线充电示范系统在南宁亮相[EB/OL]. http://www.wptchina.com.cn/ReadNews.asp?rid=2102. [41] Cui Shumei, Wang Zhiyuan, Song Liwei.A novel magnetic coupling mechanism for dynamic wireless charging system for electric vehicles[C]//2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 2016: 1-5. [42] 实时充电!“5G+自动驾驶”高功率动态无线充电道路系统亮相[EB/OL]. https://news.cctv.com/2023/07/18/ARTISeJTzFO5pvwsuh1I3PW0230718.shtml. [43] Winter J, Mayer S, Kaimer S, et al.Inductive power supply for heavy rail vehicles[C]//2013 3rd Inter- national Electric Drives Production Conference (EDPC), Nuremberg, Germany, 2013: 1-9. [44] Kim J H, Lee B S, Lee J H, et al.Development of 1-MW inductive power transfer system for a high- speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6242-6250. [45] Lee G, Kim M Y, Lee S G, et al.Operational verification of semidynamic wireless power transfer in light-rail transit systems[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 348-358. [46] 西南交通大学轨道交通无线供电技术在国内首台无线供电制式城轨车辆得到成功应用[EB/OL]. https://dqxy.swjtu.edu.cn/info/1294/20597.htm. [47] 李京, 乐文韬, 肖磊, 等. 智轨电车无线充电系统研究与应用[J]. 技术与市场, 2023, 30(8): 19-24, 27. Li Jing, Le Wentao, Xiao Lei, et al.Research and applicationon wireless charging system of ART[J]. Technology and Market, 2023, 30(8): 19-24, 27. [48] Mahajan S M, Singareddy U M.A real-time con- ductor sag measurement system using a differential GPS[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 475-480. [49] 郭俊杰. 无人驾驶车GPS自主导航系统设计与实现[D]. 西安: 长安大学, 2014. Guo Junjie.GPS navigation system design and implementation fordriverless smart vehicle[D]. Xi’an: Changan University, 2014. [50] 张煦晗. 基于激光雷达与IMU融合的静态地图构建算法研究[D]. 长春: 吉林大学, 2024. Zhang Xuhan.Research on static map construction algorithm based on the fusion of lidar and IMU[D]. Changchun: Jilin University, 2024. [51] Scaramuzza D, Fraundorfer F.Visual odometry part I: the first 30 years and fundamentals[J]. IEEE Robotics and Automation Magazine, 2011, 18(4): 80-92. [52] Tang Weiming, Li Yangyang, Deng Chenlong, et al.Stability analysis of position datum for real-time GPS/BDS/INS positioning in a platform system with multiple moving devices[J]. Remote Sensing, 2021, 13(23): 4764. [53] Li Xiaoming, Tan Xinglong, Zhao Changsheng.PSO- LSSVR assisted GPS/INS positioning in occlusion region[J]. Sensors, 2019, 19(23): 5256. [54] 周驰东. 磁导航自动导向小车(AGV)关键技术与应用研究[D]. 南京: 南京航空航天大学, 2012. Zhou Chidong.Research on the key technologies of magnetic guided automated guided vehicleand[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. [55] 王金钗. 变电站巡检机器人磁导航系统设计与实现[D]. 成都: 西南交通大学, 2015. Wang Jinchai.The design of magnetic navigation system for substation inspection robot[D]. Chengdu: Southwest Jiaotong University, 2015. [56] Preradovic S, Karmakar N C.Chipless RFID: bar code of the future[J]. IEEE Microwave Magazine, 2010, 11(7): 87-97. [57] Dardari D, D’Errico R, Roblin C, et al. Ultrawide bandwidth RFID: the next generation?[J]. Pro- ceedings of the IEEE, 2010, 98(9): 1570-1582. [58] Zhu Bing, Tao Xiaowen, Zhao Jian, et al.Two-stage UWB positioning algorithm for intelligent vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 256-266. [59] Zhang Xiaoguo, Wang Qing, Wan Dejun.The relation- ship among vehicle positioning performance, map quality, and sensitivities and feasibilities of map- matching algorithms[C]//IEEE IV2003 Intelligent Vehicles Symposium. Proceedings, Columbus, OH, USA, 2003: 468-473. [60] Zhu Bing, Tao Xiaowen, Zhao Jian, et al.An inte- grated GNSS/UWB/DR/VMM positioning strategy for intelligent vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10842-10853. [61] Zhu Zhiyu, Yang Yang, Chen Mingzhe, et al.Visible light positioning with visual odometry: a single luminaire based positioning algorithm[J]. IEEE Transactions on Communications, 2024, 72(8): 4978-4991. [62] 杨梦佳. 基于惯导与双目视觉融合的SLAM技术研究[D]. 西安: 西安科技大学, 2020. Yang Mengjia.Research on SLAM technology based on fusion of inertial navigation and binocular vision[D]. Xi’an: Xi’an University of Science and Technology, 2020. [63] 地图导航如何生成二维码?扫码直达[EB/OL]. https://blog.csdn.net/d_c1n/article/details/143566790. [64] 王生亮. GNSS/UWB/DBA/移动蜂窝网络多源融合定位算法研究[D]. 武汉: 中国科学院大学(中国科学院精密测量科学与技术创新研究院), 2021. Wang Shengliang.Research on GNSS/UWB/DBA/ mobile cellular network multi-source fusion posi- tioning algorithm[D]. Wuhan: Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 2021. [65] 杨麒弘. 基于蜂窝网络的定位技术研究[D]. 北京: 北京: 北京邮电大学, 2017. Yang Qihong.Research on location technology based on cellular network[D]. Beijing: Beijing University of Posts and Telecommunications, 2017. [66] Nagendra G R, Chen Liang, Covic G A, et al.Detection of EVs on IPT highways[J]. IEEE Journal of Emerging and Selected Topics in Power Elec- tronics, 2014, 2(3): 584-597. [67] 徐勇. 电动汽车无线供电系统导轨切换的检测和控制[D]. 重庆: 重庆大学, 2016. Xu Yong.The detection and control of coil switching for wireless EV power supply system[D]. Chongqing: Chongqing University, 2016. [68] Patil D, Miller J M, Fahimi B, et al.A coil detection system for dynamic wireless charging of electric vehicle[J]. IEEE Transactions on Transportation Electrification, 2019, 5(4): 988-1003. [69] Hwang K, Park J, Kim D, et al.Autonomous coil alignment system using fuzzy steering control for electric vehicles with dynamic wireless charging[J]. Mathematical Problems in Engineering, 2015(1): 205285. [70] Hwang K, Cho J, Kim D, et al.An autonomous coil alignment system for the dynamic wireless charging of electric vehicles to minimize lateral misa- lignment[J]. Energies, 2017, 10(3): 315. [71] Hwang K, Kim D, Har D, et al.Pickup coil counter for detecting the presence of trains operated by wireless power transfer[J]. IEEE Sensors Journal, 2017, 17(22): 7526-7532. [72] Hwang K, Cho J, Park J, et al.Ferrite position identification system operating with wireless power transfer for intelligent train position detection[J]. IEEE Transactions on Intelligent Transportation Systems, 20(1): 374-382. [73] Son S, Shin Y, Woo S, et al.Sensor coil system for misalignment detection and information transfer in dynamic wireless power transfer of electric vehicle[J]. Journal of Electromagnetic Engineering and Science, 2022, 22(3): 309-318. [74] Azad A N, Echols A, Kulyukin V A, et al.Analysis, optimization, and demonstration of a vehicular detection system intended for dynamic wireless charging applications[J]. IEEE Transactions on Transportation Electrification, 2018, 5(1): 147-161. [75] 杨金明, 邓梓颖, 陈渊睿, 等. 基于四线圈的动态无线输电的位置检测[J]. 广东电力, 2021, 34(4): 43-52. Yang Jinming, Deng Ziying, Chen Yuanrui, et al.Position detection based on four coils applied in dynamic wireless power transmission[J]. Guangdong Electric Power, 2021, 34(4): 43-52. [76] 方琪琦. 基于磁定位检测技术的电动汽车动态无线供电系统控制研究[D]. 北京: 北京交通大学, 2017. Fang Qiqi.Research on control of dynamic wireless power transfer system for electric vehicle based on magnetic positioning technology[D]. Beijing: Beijing Jiaotong University, 2017. [77] Tavakoli R, Shabanian T, Dede E M, et al.EV misalignment estimation in DWPT systems utilizing the roadside charging pads[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 752-766. [78] 王霆阳. 应用于分段式导轨的车辆位置检测与供电导轨切换技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. Wang Tingyang.Research on vehicle position detection and power supply rail switching tech- nology applied to segmented rail[D]. Harbin: Harbin Institute of Technology, 2020. [79] Tian Yong, Zhu Ze, Xiang Lijuan, et al.Vision-based rapid power control for a dynamic wireless power transfer system of electric vehicles[J]. IEEE Access, 2020, 8: 78764-78778. [80] Cheng Jun, Zhang Liyan, Chen Qihong, et al.Position detection for electric vehicle DWCS using VI-SLAM method[J]. Energy Reports, 2021, 7: 1-9. [81] Lee K, Pantic Z, Lukic S M.Reflexive field containment in dynamic inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2013, 29(9): 4592-4602. [82] Hasan N, Wang Hongjie, Saha T, et al.A novel position sensorless power transfer control of lumped coil-based in-motion wireless power transfer systems[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015: 586-593. [83] Simonazzi M, Sandrolini L, Mariscotti A.Receiver- coil location detection in a dynamic wireless power transfer system for electric vehicle charging[J]. Sensors, 2022, 22(6): 2317. [84] Kamineni A, Covic G A, Boys J T.Interoperable EV detection for dynamic wireless charging with existing hardware and free resonance[C]//2016 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Knoxville, TN, USA, 2016: 169-173. [85] Hamada T, Shirasaki D, Fujita T, et al.Proposal of sensorless vehicle detection method for start-up current control in dynamic wireless power transfer system[C]//IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 2021: 1-6. https://doi.org/10.1109/IECON48115.2021.9589667 [86] Deng Qijun, Liu Jiangtao, Czarkowski D, et al.Edge position detection of on-line charged vehicles with segmental wireless power supply[J]. IEEE Transa- ctions on Vehicular Technology, 2017, 66(5): 3610-3621. [87] Xiong Wei, Liu Jiangtao, Chen Jing, et al.Detection of secondary side position for segmented dynamic wireless charging systems based on primary phase angle sensing[J]. Electronics, 2023, 12(9): 2148. [88] Behnamfar M, Stevenson A, Tariq M, et al.Vehicle position detection based on machine learning algorithms in dynamic wireless charging[J]. Sensors, 2024, 24(7): 2346. [89] Wang Hongjie, Pratik U, Jovicic A, et al.Dynamic wireless charging of medium power and speed electric vehicles[J]. IEEE Transactions on Vehicular Tech- nology, 2021, 70(12): 12552-12566. [90] Wang Junhua, Wan Leke, Cai Changsong, et al.A dual-side magnetic integration-based receiver dete- ction method of long-track DWPT system[J]. IEEE Transactions on Power Electronics, 2024, 39(6): 7752-7765. |
|
|
|