|
|
Ground Wire Induction Energy Harvesting of Overhead Transmission Lines Based on Virtual Impedance Matching |
Feng Bo1,2, Liu Zeyang1,2, Yang Yi1,2, Zhong Jiayong1,3, Fu Liyan1,2 |
1. School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing 400054 China; 2. Chongqing Engineering and Technology Research Center of Energy Internet Chongqing 400054 China; 3. State Grid Chongqing Electric Power Company Research Institute Chongqing 401123 China |
|
|
Abstract Under the background of building a new power system, the number of online monitoring devices on transmission lines and towers has increased significantly. However, due to the particularity of the equipment installation location and the complexity of the environment, providing a stable and reliable power supply is challenging. Ground wire current transformer (CT) induction energy extraction of overhead transmission lines is an ideal power supply method for transmission lines and tower online monitoring equipment. Because of the uncertainty of air gap width in installing the magnetic core opening and closing structure of the ground-wire energy acquisition device, issues such as CT’s parameter fluctuation, constant capacitive element’s incomplete compensation, and output power reduction exist. This paper proposes an induction energy acquisition method based on virtual impedance matching. Firstly, based on the four-quadrant operation characteristics of the voltage source PWM rectifier (VSR), the equivalent circuit model of the energy extraction device is constructed. The relationship between electrical parameters and the output power of CT is analyzed, and the factors affecting the change of ground current are discussed. Then, a control strategy is proposed by indirectly fixing the d-axis current and changing the q-axis through phase shift control to optimize the working state of the energy harvesting device. Thus, it is in a resonant state and achieves maximum power output. In view of the complex problems faced by the traditional 180° open core structure in the winding and installation of the CT in the engineering application, the core structure of the CT is optimized, and the key parameters of the core material are analyzed. Finally, the appropriate core material is determined. In addition, a simulation model and an experimental prototype were built. The finite element simulation shows that the open-close structure core has stronger anti-saturation ability than the non-air gap structure core, and the core's air gap width significantly influences the device's electrical parameters. The circuit simulation shows that after a one-time correction of the device by adjusting the working mode of the VSR, the device achieves maximum power output while maintaining the resonant state. The experimental results show that the extracted energy method can meet the power demand of some low-power online monitoring equipment. The optimized CT core structure effectively improves the complexity of the traditional 180° open core structure in the winding and installation process of the device CT, which shows good engineering application potential.
|
Received: 20 November 2024
|
|
|
|
|
[1] 周劼英, 张晓, 邵立嵩, 等. 新型电力系统网络安全防护挑战与展望[J]. 电力系统自动化, 2023, 47(8): 15-24. Zhou Jieying, Zhang Xiao, Shao Lisong, et al.Challenges and prospects of cyber security protection for new power system[J]. Automation of Electric Power Systems, 2023, 47(8): 15-24. [2] 胡青云, 张波. 高压杆塔设备无线供电技术剖析[J]. 电工技术学报, 2024, 39(20): 6257-6269. Hu Qingyun, Zhang Bo.Research and development of wireless power supply technology for pylon- devices[J]. Transactions of China Electrotechnical Society, 2024, 39(20): 6257-6269. [3] 张超, 赵德安. 太阳能电池在电子电流互感器高压侧供能的研究[J]. 电力电子技术, 2009, 43(4): 42-43, 49. Zhang Chao, Zhao Dean.Research of OCT power system based on solar cell[J]. Power Electronics, 2009, 43(4): 42-43, 49. [4] Fateh B, Govindarasu M, Ajjarapu V.Wireless net- work design for transmission line monitoring in smart grid[J]. IEEE Transactions on Smart Grid, 2013, 4(2): 1076-1086. [5] 史宇昊, 王鸿, 薛枫, 等. 10 kV系统电容取能方式电源特性分析[J]. 电源学报, 2023, 21(5): 118-127. Shi Yuhao, Wang Hong, Xue Feng, et al.Analysis of power supply characteristics of capacitor energy extraction method in 10 kV power system[J]. Journal of Power Supply, 2023, 21(5): 118-127. [6] 王维, 任翰林, 许晨进, 等. 基于多级电容电场感应取能周期性供电电源的优化设计方法[J]. 电工技术学报, 2024, 39(20): 6282-6292. Wang Wei, Ren Hanlin, Xu Chenjin, et al.Opti- mization design method for periodic power supply based on multi-stage capacitor electric field energy harvesting[J]. Transactions of China Electrotechnical Society, 2024, 39(20): 6282-6292. [7] 高凯, 彭晗, 王劭菁, 等. 基于非对称弹簧的宽频率范围振动能量收集器[J]. 电工技术学报, 2023, 38(10): 2832-2840. Gao Kai, Peng Han, Wang Shaojing, et al.Wide frequency range vibration energy harvester based on asymmetric springs[J]. Transactions of China Electro- technical Society, 2023, 38(10): 2832-2840. [8] 黄文美, 刘泽群, 郭万里, 等. 磁致伸缩振动能量收集器的全耦合非线性等效电路模型[J]. 电工技术学报, 2023, 38(15): 4076-4086. Huang Wenmei, Liu Zequn, Guo Wanli, et al.Fully coupled nonlinear equivalent circuit model for magnetostrictive vibration energy harvester[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4076-4086. [9] 白玉成, 吴功平, 肖华, 等. 输电线路感应取电装置参数匹配方法[J]. 电力系统自动化, 2010, 34(21): 75-80. Bai Yucheng, Wu Gongping, Xiao Hua, et al.A parameter matching method for power induction devices on power transmission lines[J]. Automation of Electric Power Systems, 2010, 34(21): 75-80. [10] 叶凯, 刘柱, 赵鹏博, 等. 一种基于磁通控制的电磁感应式磁场能量收集器功率提升方法[J]. 电工技术学报, 2023, 38(1): 37-46. Ye Kai, Liu Zhu, Zhao Pengbo, et al.A power boosting method of electromagnetic induction magnetic field energy harvester based on magnetic flux control[J]. Transactions of China Electro- technical Society, 2023, 38(1): 37-46. [11] 蒋兴良, 谢彦斌, 胡建林, 等. 典型架空输电线路地线电磁取能等效电路的分析[J]. 电网技术, 2015, 39(7): 2052-2057. Jiang Xingliang, Xie Yanbin, Hu Jianlin, et al.Analysis of equivalent circuit for tapping elec- tromagnetic power from overhead ground wires of typical transmission lines[J]. Power System Tech- nology, 2015, 39(7): 2052-2057. [12] 谢彦斌, 蒋兴良, 胡建林, 等. 典型架空输电线路分段绝缘地线取能研究[J]. 中国电机工程学报, 2018, 38(3): 947-955. Xie Yanbin, Jiang Xingliang, Hu Jianlin, et al.Study on power-tapping from segmented insulation ground wire of typical overhead transmission line[J]. Pro- ceedings of the CSEE, 2018, 38(3): 947-955. [13] 邹军, 马晨珞. 高压交流输电线路地线磁感应取能方法[J]. 南方电网技术, 2021, 15(10): 95-101. Zou Jun, Ma Chenluo.Magnetic induction power tapping from the ground wire of high voltage AC transmission lines[J]. Southern Power System Tech- nology, 2021, 15(10): 95-101. [14] 王浩哲. 基于OPGW地线感应电流的取能电源装置研究[D]. 北京: 中国电力科学研究院, 2020. Wang Haozhe.Research on the energy-taking device based on OPGW induced current[D]. Beijing: China Electric Power Research Institute,2020. [15] 杨奕, 李旭东, 冯波, 等. 谐振补偿的多级式互感器组地线取能方法研究[J]. 重庆理工大学学报(自然科学), 2023, 37(2): 225-232. Yang Yi, Li Xudong, Feng Bo, et al.Research on the energy extraction method for multistage transformer set ground wires with resonance compensation[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(2): 225-232. [16] 李先志, 杜林, 陈伟根, 等. 输电线路状态监测系统取能电源的设计新原理[J]. 电力系统自动化, 2008, 32(1): 76-80. Li Xianzhi, Du Lin, Chen Weigen, et al.A novel scheme of draw-out power supply utilized in trans- mission line state monitoring[J]. Automation of Electric Power Systems, 2008, 32(1): 76-80. [17] 龚贤夫, 周浩, 戴攀, 等. 一种输电线路大功率取能电源的设计[J]. 电力系统保护与控制, 2012, 40(3): 124-128, 134. Gong Xianfu, Zhou Hao, Dai Pan, et al.A design of high-power supply installed on transmission lines[J]. Power System Protection and Control, 2012, 40(3): 124-128, 134. [18] 林杰, 刘刚, 张鸣. 取能电源线圈气隙宽度的影响分析[J]. 高压电器, 2012, 48(12): 75-79, 85. Lin Jie, Liu Gang, Zhang Ming.Impact analysis for the air-gap width of draw-out power supply coil[J]. High Voltage Apparatus, 2012, 48(12): 75-79, 85. [19] 郭琳云, 尹项根, 严新荣, 等. 配电网智能设备自取能电源的效率提升研究[J]. 中国电机工程学报, 2009, 29(增刊1): 217-221. Guo Linyun, Yin Xianggen, Yan Xinrong, et al.Research of improving power efficiency for intelligent device self-power supply utilized in power distribution network[J]. Proceedings of the CSEE, 2009, 29(S1): 217-221. [20] 娄杰, 陈常涛. 基于启动电流的电流互感器取能电源优化分析及实验验证[J]. 高电压技术, 2018, 44(6): 1774-1781. Lou Jie, Chen Changtao.Optimization analysis and experiment verification of current transformer power supply based on starting current[J]. High Voltage Engineering, 2018, 44(6): 1774-1781. [21] 刘铮, 樊绍胜, 胡睿. 基于阻抗匹配的输电线路在线取能方法研究[J]. 中国电机工程学报, 2019, 39(23): 6867-6876. Liu Zheng, Fan Shaosheng, Hu Rui.Research on on-line energy acquisition method for transmission lines based on impedance matching[J]. Proceedings of the CSEE, 2019, 39(23): 6867-6876. [22] Liu Zheng, Tan Hengjing, Fan Shaosheng.A wide range on-line energy acquisition method for trans- mission lines based on resonant choke coil[J]. IET Power Electronics, 2022, 15(11): 1047-1057. [23] 程志远, 隋立程, 宋凯, 等. 谐振补偿式电流互感器取能方法的研究[J]. 电网技术, 2021, 45(12): 4896-4902. Cheng Zhiyuan, Sui Licheng, Song Kai, et al.Resonance compensation current transformer energy extraction[J]. Power System Technology, 2021, 45(12): 4896-4902. [24] 宁杰, 王磊, 张佰富, 等. 基于阻抗控制的电流互感器取能控制策略研究[J]. 电力系统及其自动化学报, 2024, 36(3): 39-47. Ning Jie, Wang Lei, Zhang Baifu, et al.Current transformer energy harvesting control strategy based on impedance control[J]. Proceedings of the CSU- EPSA, 2024, 36(3): 39-47. [25] 王祎凡, 任春光, 张佰富, 等. 基于电压源型PWM整流电路的输电线路测量与感应取电一体化互感器实现方法[J]. 电工技术学报, 2023, 38(1): 13-25. Wang Yifan, Ren Chunguang, Zhang Baifu, et al.Implementation method of integrated transformer for transmission line measurement and inductive power taking based on voltage source PWM rectifier[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 13-25. [26] 唐欣, 唐凯璇, 李珍, 等. 基于电压型整流器等效阻抗在线匹配取能方法研究[J]. 中国电机工程学报, 2024, 44(24): 9811-9820. Tang Xin, Tang Kaixuan, Li Zhen, et al.Research on online matching energy extraction method based on equivalent impedance of voltage source rectifier[J]. China Industrial Economics, 2024, 44(24): 9811-9820. [27] 刘秉, 宋文胜. 基于虚拟信号反馈算法的单相PWM整流器DQ电流解耦控制[J]. 中国电机工程学报, 2018, 38(15): 4504-4513, 4651. Liu Bing, Song Wensheng.DQ current decoupling control of single-phase PWM rectifiers based on virtual signal feedback algorithm[J]. Proceedings of the CSEE, 2018, 38(15): 4504-4513, 4651. [28] Sriram V B, SenGupta S, Patra A. Indirect current control of a single-phase voltage-sourced boost-type bridge converter operated in the rectifier mode[J]. IEEE Transactions on Power Electronics, 2003, 18(5): 1130-1137. [29] 王祎凡. 面向宽电流范围的高压输电线路感应取能电源研究[D]. 太原: 太原理工大学, 2023. Wang Yifan.Research on induction energy-harvesting power supply for high-voltage transmission lines with wide current range[D]. Taiyuan: Taiyuan University of Technology, 2023. |
|
|
|