[1] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36.
Wang Weiwang, Li Shengtao, Liu Wenfeng.Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36.
[2] 朱敏慧, 闵道敏, 林宋佳, 等. 交联聚乙烯绝缘高温直流击穿威布尔分布的厚度效应[J]. 电工技术学报, 2024, 39(21): 6908-6920.
Zhu Minhui, Min Daomin, Lin Songjia, et al.Effect of thickness on DC breakdown weibull distribution of XLPE insulated cables at high temperature[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6908-6920.
[3] 张天栋, 于海楠, 张昌海. 基于多层结构设计的聚合物复合薄膜储能性能研究进展[J]. 高电压技术, 2023, 49(3): 1067-1080.
Zhang Tiandong, Yu Hainan, Zhang Changhai.Research progress in the energy storage performance of polymer composite films based on multilayer structure design[J]. High Voltage Engineering, 2023, 49(3): 1067-1080.
[4] 姜楠, 李志阳, 彭邦发, 等. 等离子体羟基化改性纳米SiO2粒子对绝缘纸绝缘特性的影响[J]. 电工技术学报, 2023, 38(24): 6817-6827.
Jiang Nan, Li Zhiyang, Peng Bangfa, et al.Effect of plasmas hydroxylation modified nano-SiO2 particles on insulation characteristics of insulating papers[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6817-6827.
[5] 戴超, 朱光宇, 丁曼, 等. 高温阶梯式升压下等离子体处理纳米颗粒对环氧树脂复合材料的电荷动力学特性影响[J]. 电工技术学报, 2023, 38(21): 5712-5724.
Dai Chao, Zhu Guangyu, Ding Man, et al.Influence of plasma treated nanoparticles on charge dynamics of epoxy based nanocomposites under stepped boost at high temperature[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5712-5724.
[6] Wen Fei, Zhang Lin, Wang Ping, et al.A high-temperature dielectric polymer poly(acrylonitrile butadiene styrene) with enhanced energy density and efficiency due to a cyano group[J]. Journal of Materials Chemistry A, 2020, 8(30): 15122-15129.
[7] Yue Dong, Yin Jinghua, Zhang Wenchao, et al.Computational simulation for breakdown and energy storage performances with optimization in polymer dielectrics[J]. Advanced Functional Materials, 2023, 33(30): 2300658.
[8] Zhang Tian, Chen Xin, Thakur Y, et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature[J]. Science Advances, 2020, 6(4): eaax6622.
[9] 王雨橙, 李化, 王哲豪, 等. 基于陷阱密度的双向拉伸聚丙烯薄膜耐γ辐照积累剂量阈值评估[J]. 电工技术学报, 2023, 38(18): 5039-5048.
Wang Yucheng, Li Hua, Wang Zhehao, et al.Threshold evaluation of γ irradiation accumulated dose of BOPP film based on trap density[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 5039-5048.
[10] 卢东斌, 李凤祁, 姚其新, 等. 高压直流输电换流变压器分接头调节的死区角度和死区电压分析[J]. 电力系统自动化, 2023, 47(24): 165-174.
Lu Dongbin, Li Fengqi, Yao Qixin, et al.Analysis on dead-zone angle and dead-zone voltage for tap adjustment of HVDC transmission converter transformer[J]. Automation of Electric Power Systems, 2023, 47(24): 165-174.
[11] Deshmukh A A, Wu Chao, Yassin O, et al.Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification[J]. Energy & Environmental Science, 2022, 15(3): 1307-1314.
[12] Wang Shaojie, Luo Zhen, Liang Jiajie, et al.Polymer nanocomposite dielectrics: understanding the matrix/ particle interface[J]. ACS Nano, 2022, 16(9): 13612-13656.
[13] Ding Xiangping, Pan Zhongbin, Cheng Yu, et al.Modulating electron traps of PEI-based nanocomposites for superb capacitive performance over a broad temperature range[J]. Chemical Engineering Journal, 2023, 453: 139917.
[14] 刘骥, 闫爽, 王守明, 等. 基于低频高压频域介电谱的XLPE电缆电树枝老化状态评估[J]. 电工技术学报, 2023, 38(9): 2510-2518.
Liu Ji, Yan Shuang, Wang Shouming, et al.Evaluation of electrical tree aging state of XLPE cables based on low frequency and high voltage frequency domain spectroscopy[J]. Transactions of China Electro-technical Society, 2023, 38(9): 2510-2518.
[15] Pan Zizhao, Li Li, Wang Lina, et al.Tailoring poly(styrene-co-maleic anhydride) networks for all-polymer dielectrics exhibiting ultrahigh energy density and charge-discharge efficiency at elevated temperatures[J]. Advanced Materials, 2023, 35(1): e2207580.
[16] Huang Wen, Ju Tianxiong, Li Ruipeng, et al.High-κ and high-temperature dipolar glass polymers based on sulfonylated and cyanolated poly(arylene ether)s for capacitive energy storage[J]. Advanced Electronic Materials, 2023, 9(1): 2200414.
[17] Ai Ding, Li He, Zhou Yao, et al.Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage[J]. Advanced Energy Materials, 2020, 10(16): 1903881.
[18] Yang Mingcong, Wang Shaojie, Fu Jing, et al.Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites[J]. Advanced Materials, 2023, 35(30): e2301936.
[19] Sun Binzhou, Hu Penghao, Ji Xumin, et al.Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature[J]. Small, 2022, 18(28): e2202421.
[20] Zhou Yao, Li Qi, Dang Bin, et al.A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures[J]. Advanced Materials, 2018, 30(49): 1805672.
[21] 南江, 刘诚威, 夏平安. 聚四氟乙烯/纳米碳化硅改性复合材料的制备及其介电特性[J]. 电工技术学报, 2021, 36(增刊1): 1-7.
Nan Jiang, Liu Chengwei, Xia Pingan.Preparation and dielectric characteristics of nano-SiC/PTFE composite[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 1-7.
[22] 李鹏新, 崔浩喆, 邢照亮, 等. 环氧/POSS复合电介质介电与热学性能[J]. 电工技术学报, 2022, 37(2): 291-298.
Li Pengxin, Cui Haozhe, Xing Zhaoliang, et al.Dielectric and thermal properties of epoxy/POSS composites[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 291-298.
[23] 李志辉, 解曾祺, 李庆民, 等. 多巴胺接枝的纳米氮化硼改性环氧树脂绝缘表面电荷高频消散特性[J]. 电工技术学报, 2023, 38(5): 1115-1128.
Li Zhihui, Xie Zengqi, Li Qingmin, et al.Study on the surface charge dissipation characteristics of epoxy resin modified by dopamine grafted nano boron nitride under high frequency electric stress[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1115-1128.
[24] Yang Minzheng, Li Haoyang, Wang Jian, et al.Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200℃[J]. Nature Energy, 2024, 9: 143-153.
[25] 曹春诚, 李文博, 程显, 等. 纳米Al2O3/环氧树脂复合材料微秒脉冲沿面闪络特性研究[J]. 高压电器, 2023, 59(6): 111-119.
Cao Chuncheng, Li Wenbo, Cheng Xian, et al.Study on surface flashover characteristic of nano-Al2O3/ epoxy resin composites in microsecond pulse[J]. High Voltage Apparatus, 2023, 59(6): 111-119.
[26] Chi Qingguo, Gao Zhiyou, Zhang Changhai, et al.Microstructures and energy storage property of sandwiched BZT-BCT@Fe3O4/polyimide composites[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(1): 1-8.
[27] Liu Guang, Lei Qingquan, Feng Yu, et al.High-temperature energy storage dielectric with inhibition of carrier injection/migration based on band structure regulation[J]. InfoMat, 2023, 5(2): e12368.
[28] Li Xinyi, Xie Yunchuan, Xiong Jie, et al.Superior high-temperature capacitive performance of polyaryl ether ketone copolymer composites enabled by interfacial engineered charge traps[J]. Materials Horizons, 2023, 10(12): 5881-5891.
[29] Li Yanpeng, Yin Jinghua, Feng Yu, et al.Metal-organic Framework/Polyimide composite with enhanced breakdown strength for flexible capacitor[J]. Chemical Engineering Journal, 2022, 429: 132228.
[30] Bao Zhiwei, Hou Chuangming, Shen Zhonghui, et al.Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites[J]. Advanced Materials, 2020, 32(25): e1907227.
[31] Li He, Gadinski M R, Huang Yuqi, et al.Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency[J]. Energy & Environmental Science, 2020, 13(4): 1279-1286.
[32] Li He, Ai Ding, Ren Lulu, et al.Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers[J]. Advanced Materials, 2019, 31(23): e1900875.
[33] Dou Lüye, Yang Bingbing, Lan Shun, et al.High-entropy-nanofibers enhanced polymer nanocomposites for high-performance energy storage[J]. Advanced Energy Materials, 2023, 13(11): 2203925.
[34] Wang Pengjian, Guo Yan, Zhou Di, et al.High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers[J]. Advanced Functional Materials, 2022, 32(31): 2204155. |