|
|
Insulation Characterization of Environmentally Friendly Gases for ±400 kV DC Wall Bushing |
Cheng Xian1, Liu Sai1, Ge Guowei1, Chai Yinghui2, Han Shumo1,3, Du Shuai1 |
1. School of Electrical and Information Engineering Zhengzhou University Zhengzhou 450001 China; 2. Pinggao Group Co. Ltd Pingdingshan 467000 China; 3. XJ Group Corporation Xuchang 461000 China |
|
|
Abstract ±400 kV DC wall bushing as an important equipment connecting external electric field and internal valve hall, the data of environmentally friendly gases dry air, CO2 and C4F7N (perfluoro isobutyronitrile) gas mixture in the existing research are not fully applicable to DC wall bushing, the research on the insulation characteristics of environmentally friendly gases for the typical electric field structure of DC wall bushing is of great significance. In this paper, firstly, the electric field simulation analysis of ±400 kV DC wall bushing is carried out, and the overall electric field distribution inside the wall bushing is obtained, which is low at both ends and high in the middle, and the maximum value appears in the middle of the arc of the end of the shielding cover of the through-wall cylinder, so that different types of electrodes are designed according to the typical location of the wall bushing in terms of the strength of the electric field and the degree of inhomogeneity. Secondly, the breakdown characteristics of dry air and CO2 with different electrode forms and different electrode distances in the range of 0.5~1.0 MPa and the breakdown characteristics of C4F7N/CO2 gas mixture with different electrode distances under ball-plate electrodes and coaxial electrodes in the range of 0.1~0.6 MPa have been investigated experimentally at positive and negative polarity DC voltage and the three kinds of gases have been compared under the same conditions. The experimental results show that the breakdown voltages of dry air and CO2 and C4F7N/CO2 gas mixture will show saturation phenomenon when the gas pressure is too high; under the same conditions, the insulating property of dry air is 1.18 times higher than that of CO2. Under the sphere plate electrode, the DC negative breakdown voltage of 0.9 MPa dry air can reach 77.2% of the negative breakdown voltage of 0.4 MPa SF6 gas mixture, which can be used for ±400 kV DC wall bushing. Firstly, ±400 kV DC wall bushing is modeled in three dimensions, and finite element electric field simulation analysis and thermal field simulation analysis are carried out on the model, which is equivalent to different electrode types according to the distribution of electric field simulation and the electric field inhomogeneity at each typical position of the DC wall bushing. Secondly, we design and manufacture a set of environmentally friendly gas insulation characteristics test device by ourselves, and then introduce the test circuit principle of DC, and build an environmentally friendly gas insulation characteristics test platform according to the circuit schematic diagram. Finally, the test results are analyzed, and the DC breakdown tests are carried out for dry air, CO2 and C4F7N/CO2 gas mixture under different electrode forms, different air pressures and different electrode distances to obtain the insulating properties of the three gases, and the feasibility of substituting SF6 for the test gases in Wall Bushing is discussed, so as to provide important references for the application of environmentally friendly insulating gases in ±400 kV DC wall bushing It provides an important reference for the application of environmentally friendly insulating gases in ±400 kV DC wall bushing. Based on the breakdown characteristics of the three gases and environmental protection, in ±400 kV DC wall bushing, 0.9 MPa dry air has great potential for application, up to 77.2% of the SF6 breakdown voltage at 0.4 MPa, and the improvement of the breakdown voltage of insulating gases in the wall bushing in the practical application needs to take into account the unevenness of the electric field and the combined effect of space charge.
|
Received: 18 January 2024
|
|
|
|
|
[1] 赵建利, 姚顺, 岳永刚, 等. 500kV SF6瓷质套管多工况仿真与故障分析[J]. 电工技术学报, 2021, 36(增刊2): 736-745. Zhao Jianli, Yao Shun, Yue Yonggang, et al.Simulation and failure analysis of 500kV SF6 porcelain bushing under complicated working conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(S2): 736-745. [2] 焦重庆, 李明洋, 崔翔. 特高压气体绝缘开关设备套管的宽频等效电路建模[J]. 电工技术学报, 2016, 31(20): 64-72. Jiao Chongqing, Li Mingyang, Cui Xiang.Broadband equivalent circuit model of bushing for gas insulated switchgear in ultra high voltage substation[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 64-72. [3] 中国人民共和国中央人民政府. 中国中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. (2021-09-22)[2024-01-10]. https://www.gov.cn/zhengce/2021-10/24/content_ 5644613.htm. [4] 曾令文. 500 kV超高压直流穿墙套管有限元三维电场分析[J]. 电瓷避雷器, 2021(2): 53-58. Zeng Lingwen.Finite element three-dimensional electric field analysis of 500 kV EHV DC wall bushing[J]. Insulators and Surge Arresters, 2021(2): 53-58. [5] 张丽娜. ±1000kV直流穿墙套管的电场分布研究[D]. 济南: 山东大学, 2014. Zhang Lina.Study on electric field distribution of ±1000kV DC through-wall bushing[D]. Jinan: Shandong University, 2014. [6] 赵鸣鸣, 于维鑫, 孔飞, 等. 基于二元布气的大气压等离子体沉积TiO2功能层提高陶瓷表面绝缘性能[J]. 电工技术学报, 2022, 37(13): 3404-3412. Zhao Mingming, Yu Weixin, Kong Fei, et al.Improvement of surface insulating properties of ceramics by deposition of TiO2 functional layer by atmospheric pressure plasma with binary gas distribution[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3404-3412. [7] 陶子林, 郑宇, 周文俊, 等. 微水条件下SF6/CF4混合气体中的低温沿面放电特性[J]. 高压电器, 2023, 59(9): 27-34. Tao Zilin, Zheng Yu, Zhou Wenjun, et al.Low temperature surface discharge characteristics of SF6/CF4 mixture under microwater conditions[J]. High Voltage Apparatus, 2023, 59(9): 27-34. [8] Kieffel Y, Biquez F, Ponchon P, et al.SF6 alternative development for high voltage Switchgears[C]//2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 2015: 1-5. [9] 吴鹏, 叶凡超, 李祎, 等. C4F7N/CO2/O2与三元乙丙橡胶的相容性及相互作用机理研究[J]. 电工技术学报, 2022, 37(13): 3393-3403. Wu Peng, Ye Fanchao, Li Yi, et al.Compatibility and interaction mechanism between C4F7N/CO2/O2 and EPDM[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3393-3403. [10] 陈琪, 张晓星, 李祎, 等. 环保绝缘介质C4F7N/ CO2/O2混合气体的放电分解特性[J]. 电工技术学报, 2020, 35(1): 80-87. Chen Qi, Zhang Xiaoxing, Li Yi, et al.The discharge decomposition characteristics of environmental-friendly insulating medium C4F7N/CO2/O2 gas mixture[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 80-87. [11] 李祎, 张晓星, 傅明利, 等. 环保绝缘气体C4F7N研究及应用进展Ⅱ: 相容性、安全性及设备研发[J]. 电工技术学报, 2021, 36(21):4567-4579. Li Yi, Zhang Xiaoxing, Fu Mingli, et al.Research and application progress of eco-friendly gas insulating medium C4F7N, part Ⅱ: material compatibility, safety and equipment development[J]. Transactions of China Electrotechnical Society, 2021, 36(21):4567-4579. [12] 周文俊, 郑宇, 高克利, 等. 环保型绝缘气体电气特性研究进展[J]. 高电压技术, 2018, 44(10): 3114-3124. Zhou Wenjun, Zheng Yu, Gao Keli, et al.Progress in researching electrical characteristics of environment-friendly insulating gases[J]. High Voltage Engineering, 2018, 44(10): 3114-3124. [13] 程显, 杜帅, 葛国伟, 等. 环保型罐式多断口真空断路器均压配置研究[J]. 电工技术学报, 2021, 36(15): 3154-3162. Cheng Xian, Du Shuai, Ge Guowei, et al.Study on voltage-sharing configuration of environment-friendly tank type multi-break vacuum circuit breakers[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3154-3162. [14] 李旭东, 周伟, 屠幼萍, 等. 0.1~0.25MPa气压下二元混合气体SF6-N2和SF6-CO2的击穿特性[J]. 电网技术, 2012, 36(4): 260-264. Li Xudong, Zhou Wei, Tu Youping, et al.Breakdown characteristics of binary gas mixtures SF6-N2 and SF6-CO2 under 0.1-0.25 MPa atmosphere pressures[J]. Power System Technology, 2012, 36(4): 260-264. [15] 毛光辉, 高理迎, 张民, 等. SF6/N2混合气体雷电冲击放电特性及协同效应研究[J]. 高电压技术, 2022, 48(2): 674-680. Mao Guanghui, Gao Liying, Zhang Min, et al.Analysis on discharge characteristics and synergistic effect of SF6/N2 mixed gas under lightning impulse[J]. High Voltage Engineering, 2022, 48(2): 674-680. [16] 张博雅, 周然, 郝迈, 等. C4F7N混合气体在40.5kV断路器中的应用研究(一): 燃弧特性仿真与灭弧性能评估[J]. 中国电机工程学报, 2022, 42(23): 8750-8761. Zhang Boya, Zhou Ran, Hao Mai, et al.Research on application of C4F7N gas mixture in 40.5kV circuit breaker (part I): simulation and evaluation of arc extinguishing performance[J]. Proceedings of the CSEE, 2022, 42(23): 8750-8761. [17] 崔兆轩, 林莘, 钟建英, 等. C4F7N/CO2混合气体特高压母线通流温升特性研究[J]. 电工技术学报, 2023, 38(9): 2491-2499. Cui Zhaoxuan, Lin Xin, Zhong Jianying, et al.Study on the temperature rise characteristics of C4F7N/CO2 mixed gas ultra high voltage bus[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2491-2499. [18] John G, Owens P E.Greenhouse gas emission reductions in power equipment through use of a sustainable alternative to SF6[C]//2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO, 2018: 1-9. [19] 胡世卓, 周文俊, 郑宇, 等. 3种缓冲气体对C4F7N混合气体绝缘特性的影响[J]. 高电压技术, 2020, 46(1): 224-232. Hu Shizhuo, Zhou Wenjun, Zheng Yu, et al.Influence of three buffer gases on dielectric strength of C4F7N mixtures[J]. High Voltage Engineering, 2020, 46(1): 224-232. [20] Tu Youping, Cheng Yi, Wang Cong, et al.Insulation characteristics of fluoronitriles/CO2 gas mixture under DC electric field[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1324-1331. [21] Zhao Hu, Li Xingwen, Zhu Kai, et al.Study of the arc interruption performance of SF6-CO2 mixtures as a substitute for SF6[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2657-2667. [22] 王欢, 汪泉, 项琼, 等. 板-板和球-球在CO2气体内的放电特性[J]. 高电压技术, 2015, 41(6): 2002-2007. Wang Huan, Wang Quan, Xiang Qiong, et al.Discharge characteristics of CO2 in the plate-plate and sphere-sphere electrodes[J]. High Voltage Engineering, 2015, 41(6): 2002-2007. [23] 满林坤, 肖登明. 球板电极下的低压CO2绝缘性能研究[J]. 绝缘材料, 2016, 49(12): 52-54, 61. Man Linkun, Xiao Dengming.Research on insulating properties of low pressure CO2 in sphere-plate electrode[J]. Insulating Materials, 2016, 49(12): 52-54, 61. [24] Shin G C, Kim S W, Kil G S.Comparison between the PD characteristics of g3 and dry air for gas-insulated switchgears[J]. Energies, 2022, 15(19): 7043. [25] 葛国伟, 王文博, 程显, 等. 基于两间隙异步联动的一体化高压真空灭弧室电场设计[J]. 电工技术学报, 2024, 39(17): 5555-5564. Ge Guowei, Wang Wenbo, Cheng Xian, et al.Electric field design of integrated high-voltage vacuum interrupter based on two-gap asynchronous linkage[J]. Transactions of China Electrotechnical Society, 2024, 39(17): 5555-5564. [26] 程显, 闫冬冬, 葛国伟, 等. 基于耦合电抗器的阻容型混合直流断路器拓扑结构研究[J]. 电工技术学报, 2023, 38(3): 818-827. Cheng Xian, Yan Dongdong, Ge Guowei, et al.Research on the topology of the resistance-capacitance hybrid DC circuit breaker with coupling reactors[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 818-827. [27] 范钦晓, 申森林, 程显, 等. 一种阻容型限流式混合直流断路器拓扑结构研究[J]. 高压电器, 2023, 59(12): 10-18. Fan Qinxiao, Shen Senlin, Cheng Xian, et al.Research on topology of a Resistive-capacitive type current-limiting hybrid DC circuit breaker[J]. High Voltage Apparatus, 2023, 59(12): 10-18. [28] 程显, 王振伟, 吕彦鹏, 等. 基于多孔隙触发的三电极场畸变开关设计与实验研究[J]. 电工技术学报, 2023, 38(24): 6807-6816. Cheng Xian, Wang Zhenwei, Lü Yanpeng, et al.Design and experiment study of three electrode field distortion switch based on multi-hole trigger[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6807-6816. [29] 李祎, 张晓星, 傅明利, 等. 环保绝缘气体C4F7N研究及应用进展Ⅰ: 绝缘及电、热分解特性[J]. 电工技术学报, 2021, 36(17): 3535-3552. Li Yi, Zhang Xiaoxing, Fu Mingli, et al.Research and application progress of eco-friendly gas insulating medium C4F7N, part Ⅰ: insulation and electrical, thermal decomposition properties[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3535-3552. [30] 郑宇, 周文俊, 喻剑辉, 等. 温度对C4F7N/CO2混合气体工频放电场强的影响规律[J]. 电工技术学报, 2020, 35(1): 52-61. Zheng Yu, Zhou Wenjun, Yu Jianhui, et al.Influence of temperature on power frequency discharge field intensity of C4F7N/CO2 mixed gas[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 52-61. [31] 杨圆, 高克利, 袁帅, 等. 典型电场下C4F7N/CO2/ O2混合气体工频击穿特性研究[J]. 电工技术学报, 2022, 37(15): 3913-3922. Yang Yuan, Gao Keli, Yuan Shuai, et al.Research on the power frequency breakdown characteristics of C4F7N/CO2/O2 gas mixture under typical electric fields[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3913-3922. [32] 张天然, 周文俊, 王凌志, 等. 工频电压下电场不均匀度对C4F7N/CO2混合气体绝缘性能的影响[J]. 高电压技术, 2020, 46(3): 1018-1026. Zhang Tianran, Zhou Wenjun, Wang Lingzhi, et al.Influences of electric field nonuniformity on breakdown characteristics of fluoronitriles/CO2 gas mixtures under power frequency voltage[J]. High Voltage Engineering, 2020, 46(3): 1018-1026. [33] 肖淞, 张晓星, 戴琦伟, 等. CF3I/N2混合气体在不同电场下的工频击穿特性试验研究[J]. 中国电机工程学报, 2016, 36(22): 6276-6285. Xiao Song, Zhang Xiaoxing, Dai Qiwei, et al.Experimental research of CF3I/N2 gas mixtures on power frequency breakdown performances under different electric field[J]. Proceedings of the CSEE, 2016, 36(22): 6276-6285. [34] 王璁, 屠幼萍, 罗颜, 等. 应用于直流GIL中环境友好型气体的绝缘性能研究[J]. 中国电机工程学报, 2016, 36(24): 6711-6717. Wang Cong, Tu Youping, Luo Yan, et al.Insulation performance of environmentally friendly gas applied to HVDC-GIL[J]. Proceedings of the CSEE, 2016, 36(24): 6711-6717. [35] 张晓星, 陈琪, 张季, 等. 高气压下环保型C4F7N/CO2混合气体工频击穿特性[J]. 电工技术学报, 2019, 34(13): 2839-2845. Zhang Xiaoxing, Chen Qi, Zhang Ji, et al.Power frequency breakdown characteristics of environmental-friendly C4F7N/CO2 gas mixtures under high pressure conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2839-2845. [36] 冀肖彤, 汤浩, 李金忠. 同轴圆柱SF6气体间隙直流绝缘特性及其影响因素[J]. 中国电机工程学报, 2012, 32(34): 181-188. Ji Xiaotong, Tang Hao, Li Jinzhong.DC voltage insulation characteristics and influencing factors for coaxial cylinder SF6 gap[J]. Proceedings of the CSEE, 2012, 32(34): 181-188. [37] Khan B, Saleem J, Khan F, et al.Analysis of the dielectric properties of R410A Gas as an alternative to SF6 for high-voltage applications[J]. High Voltage, 2019, 4(1): 41-48. |
|
|
|