|
|
Research on Properties of Liquid Crystalline Epoxy for High-Voltage and Large-Power IGBT (Part 2): Electrical Insulation Performance |
Wang Zhengdong, Cao Xiaolong, Yang Ganqiu, Luo Meng, Zhou Yuanhang |
School of Mechanical and Electrical Engineering Xi’an University of Architecture and Technology Xi’an 710055 China |
|
|
Abstract Encapsulating materials with high thermal conductivity excellent heat resistance and electrical insulation have great application prospects in the field of high-voltage and large-power insulated gate bipolar transistors (IGBT). All organic liquid crystalline epoxy is a good candidate because of its theoretically high thermal conductivity, high glass-transition temperature, and outstanding electrical insulation performance. It can be attributed its unique liquid crystalline self-assembly ordered domains and a mass of rigid molecular structures. More importantly, the two new epoxy monomers have low viscosity under high temperature conditions, which is very suitable for potting process of epoxy for the encapsulation of IGBT. Therefore, it has great advantages in the future application of encapsulation of high-voltage and large-power devices. In this work, a novel liquid crystalline epoxy (named TMB-5+) with dual mesogenic units was constructed. Benefits by ordered liquid crystalline domains and a large number of rigid structures, the new liquid crystalline epoxy exhibits excellent heat resistance and thermal conductivity. The related research was presented in the first paper of this work. This paper is the second in a series of papers, which investigates the electrical insulation performance of liquid crystalline epoxy. Firstly, the dielectric breakdown strength of the new liquid crystalline epoxy film was studied. The study showed that the TMB-5+ sample containing double mesogenic units exhibited a higher breakdown strength, reaching 126.72kV/mm, which was 46.9% higher than traditional epoxy. The higher phenyl content and denser liquid crystalline domains in the TMB-5+ sample were considered to be beneficial for improving the breakdown strength. Base on simulation of the free volume and mean square displacement of the new epoxy, we found that the liquid crystalline epoxy has lower free volume parameters and weaker movement ability of molecular chain under the electric field. These factors also showed positive impacts on improving the breakdown strength. Secondly, the partial discharge capacity of liquid crystalline epoxy was studied, and it was found that liquid crystalline epoxy has lower partial discharge capacity under the same voltage of 8 kV. The results of the measuring thermal stimulation depolarization current showed that the liquid crystalline crosslinking material with dual mesogenic units had an increased trap energy level and enhanced the ability to capture electrons. Both lower partial discharge capacity and higher trap energy levels contribute to reducing the breakdown risk of epoxy materials. In addition, the dielectric constant and dielectric loss were analyzed, and it was found that liquid crystalline domains can effectively suppress the reversal of dipoles, thereby reducing the dielectric constant of the material. And the liquid crystalline epoxy exhibits excellent thermal and electrical insulation properties, as well as good mechanical properties. This study emphatically characterized electrical insulation and thermal performance of liquid crystalline epoxy resin, and can provide certain practical reference for the application of new epoxy resin in the insulation packaging materials of high-voltage and large-power IGBT.
|
Received: 04 December 2023
|
|
|
|
|
[1] 王来利, 赵成, 张彤宇, 等. 碳化硅功率模块封装技术综述[J]. 电工技术学报, 2023, 38(18): 4947-4962. Wang Laili, Zhao Cheng, Zhang Tongyu, et al.Review of packaging technology for silicon carbide power modules[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4947-4962. [2] Wang Yangang, Wu Yibo, Jones S, et al.Challenges and trends of high power IGBT module packaging[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 2014: 1-7. [3] 王磊, 魏晓光, 唐新灵, 等. 功率器件封装结构热设计综述[J]. 中国电机工程学报, 2024, 44(7): 2748-2774. Wang Lei, Wei Xiaoguang, Tang Xinling, et al.Review on thermal design of power device package structures[J]. Proceedings of the CSEE, 2024, 44(7): 2748-2774. [4] 李文艺, 王亚林, 尹毅. 高压功率模块封装绝缘的可靠性研究综述[J]. 中国电机工程学报, 2022, 42(14): 5312-5326. Li Wenyi, Wang Yalin, Yin Yi.Review of packaging insulation reliability for high voltage power module[J]. Proceedings of the CSEE, 2022, 42(14): 5312-5326. [5] 蒋起航, 王威望, 钟禹, 等. 环氧树脂高频松弛的交流电导与双极性方波击穿特性[J]. 电工技术学报, 2024, 39(4): 1159-1171. Jiang Qihang, Wang Weiwang, Zhong Yu, et al.AC conductivity with high frequency relaxation and breakdown characteristics of epoxy resin under bipolar square wave voltage[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1159-1171. [6] Yao Tong, Chen Ke, Shao Tao, et al.Nano-BN encapsulated micro-AlN as fillers for epoxy composites with high thermal conductivity and sufficient dielectric breakdown strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 528-534. [7] Wang Zhengdong, Meng Guodong, Wang Liangliang, et al.Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets[J]. Scientific Reports, 2021, 11: 2495. [8] 刘东明, 李学宝, 顼佳宇, 等. 高压SiC器件封装用有机硅弹性体高温宽频介电特性分析[J]. 电工技术学报, 2021, 36(12): 2548-2559. Liu Dongming, Li Xuebao, Xu Jiayu, et al.Analysis of high temperature wide band dielectric properties of organic silicone elastomer for high voltage SiC device packaging[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2548-2559. [9] 顼佳宇, 李学宝, 崔翔, 等. 高压大功率IGBT器件封装用有机硅凝胶的制备工艺及耐电性[J]. 电工技术学报, 2021, 36(2): 352-361. Xu Jiayu, Li Xuebao, Cui Xiang, et al.Preparation process and breakdown properties of silicone gel used for the encapsulation of IGBT power modules[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 352-361. [10] Guo Huilong, Lu Mangeng, Liang Liyan, et al.Liquid crystalline epoxies with lateral substituents showing a low dielectric constant and high thermal conductivity[J]. Journal of Electronic Materials, 2017, 46(2): 982-991. [11] Wang Liangliang, Yang Chenxi, Wang Xinyue, et al.Advances in polymers and composite dielectrics for thermal transport and high-temperature applications[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107320. [12] 王蕴, 周文英, 曹丹, 等. 本征导热液晶环氧及其复合材料的研究进展[J]. 复合材料学报, 2022, 39(5): 2060-2072. Wang Yun, Zhou Wenying, Cao Dan, et al.Progress in intrinsically thermal conductive liquid crystalline epoxy and composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2060-2072. [13] 王争东, 曹晓龙, 杨淦秋, 等. 高压大功率IGBT用液晶环氧性能研究(一):热导率与耐热性能[J]. 电工技术学报, 2025, 40(1): 273-284. Wang Zhengdong, Cao Xiaolong, Yang Ganqiu, et al.Research on properties of liquid crystalline epoxy for high-voltage and large-power IGBT (part 1): thermal conductivity and heat resistance performance[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 273-284. [14] Guo Huilong, Zheng Jian, Gan Jianqun, et al.Relationship between crosslinking structure and low dielectric constant of hydrophobic epoxies based on substituted biphenyl mesogenic units[J]. RSC Advances, 2015, 5(107): 88014-88020. [15] 龙云峰, 黄正勇, 胡清华, 等. 高性能液晶环氧树脂纤维薄膜[J]. 绝缘材料, 2022, 55(6): 22-27. Long Yunfeng, Huang Zhengyong, Hu Qinghua, et al.High-performance liquid crystal epoxy resin fiber film[J]. Insulating Materials, 2022, 55(6): 22-27. [16] 张磊, 陈玥, 孙文杰, 等. 基于击穿增强的全有机复合薄膜储能提升策略研究进展[J]. 高电压技术, 2023, 49(3): 1081-1094. Zhang Lei, Chen Yue, Sun Wenjie, et al.Research progress in all-organic composite film energy storage enhancement strategies based on breakdown enhancement[J]. High Voltage Engineering, 2023, 49(3): 1081-1094. [17] 成永红, 孟国栋, 董承业. 微纳尺度电气击穿特性和放电规律研究综述[J]. 电工技术学报, 2017, 32(2): 13-23. Cheng Yonghong, Meng Guodong, Dong Chengye.Review on the breakdown characteristics and discharge behaviors at the micro & nano scale[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 13-23. [18] Zhou Liwei, Wang Xuan, Zhang Yongqi, et al.An experimental study of the crystallinity of different density polyethylenes on the breakdown characteristics and the conductance mechanism transformation under high electric field[J]. Materials, 2019, 12(17): 2657. [19] Li Dawei, Zhou Liwei, Wang Xuan, et al.Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property[J]. Materials, 2019, 12(11): 1746. [20] Hrabalova M, Gregorova A, Wimmer R, et al.Effect of wood flour loading and thermal annealing on viscoelastic properties of poly (lactic acid) composite films[J]. Journal of Applied Polymer Science, 2010, 118(3): 1534-1540. [21] Lee J Y, Jang J.Anisotropically ordered liquid crystalline epoxy network on carbon fiber surface[J]. Polymer Bulletin, 2007, 59(2): 261-268. [22] Su Jingang, Du Boxue, Han Tao, et al.Nanoscale-trap-modulated electrical degradation in polymer dielectric composites using antioxidants as voltage stabilizers[J]. Composites Part B: Engineering, 2019, 178: 107434. [23] 秦毅. 环氧树脂基纳米复合绝缘材料的耐电压击穿性能研究[D]. 合肥: 中国科学技术大学, 2021. Qin Yi.Study on voltage breakdown resistance of epoxy resin-based nanocomposites insulating material[D]. Hefei: University of Science and Technology of China, 2021. [24] Wei Yanhui, Yang Jingjing, Li Guochang, et al.Influence of molecular chain side group on the electrical properties of silicone rubber and mechanism analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(4): 1465-1473. [25] 郭睿, 朱伟林, 于金旭, 等. SiO2纳米改性对PE击穿场强影响的模拟分析[J]. 光纤与电缆及其应用技术, 2020(3): 6-9, 31. Guo Rui, Zhu Weilin, Yu Jinxu, et al.Simulation analysis of the effect of nano-SiO2 modification on the breakdown field strength of PE[J]. Optical Fiber & Electric Cable and Their Applications, 2020(3): 6-9, 31. [26] 郭睿. 聚乙烯/二氧化硅纳米复合材料微观结构与电学性能仿真[D]. 哈尔滨: 哈尔滨理工大学, 2019. Guo Rui.Simulation of morphology and electrical properties of polyethylene/silicondioxide nano-composite[D]. Harbin: Harbin University of Science andTechnology, 2019. [27] 陈小林, 成永红, 谢小军, 等. XLPE绝缘电老化中局放特性试验研究[J]. 高电压技术, 2006, 32(4): 22-24. Chen Xiaolin, Cheng Yonghong, Xie Xiaojun, et al.Experimental study on partial discharge in XLPE insulation during electrical aging[J]. High Voltage Engineering, 2006, 32(4): 22-24. [28] Wang Yalin, Wu Jiandong, Yin Yi.A modified thermally stimulated current analysis method for direct determination of trap energy distribution[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 3138-3143. [29] Jilani W, Mzabi N, Fourati N, et al.Effects of curing agent on conductivity, structural and dielectric properties of an epoxy polymer[J]. Polymer, 2015, 79: 73-81. [30] 陈向荣, 黄小凡, 王启隆, 等. 电压稳定剂接枝改性对500 kV直流XLPE电缆材料电气性能的影响[J]. 电工技术学报, 2024, 39(1): 23-33. Chen Xiangrong, Huang Xiaofan, Wang Qilong, et al.Effect of voltage stabilizer grafting on electrical properties of 500 kV DC XLPE cable insulation materials[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 23-33. [31] Li Shengtao, Xie Dongri, Qu Guanghao, et al.Tailoring interfacial compatibility and electrical breakdown properties in polypropylene based composites by surface functionalized POSS[J]. Applied Surface Science, 2019, 478: 451-458. [32] 孙文杰, 张磊, 李天宇, 等. 基于动态受阻脲键氢化环氧树脂的介电性能与可修复性能[J]. 高电压技术, 2022, 48(7): 2668-2676. Sun Wenjie, Zhang Lei, Li Tianyu, et al.Dielectric and repairable properties of hydrogenated epoxy resin based on dynamic hindered urea bonds[J]. High Voltage Engineering, 2022, 48(7): 2668-2676. |
|
|
|