|
|
Application of Fractal Analysis on Researching Shapes of Electrical Trees |
Zhang Xiaohong, Chi Xiaohong, Gao Junguo, Wang Wei |
Key Laboratory of Engineering Dielectric and Its Application of Ministry of Education
Harbin University of Science and Technology Harbin 150080 China |
|
|
Abstract The shapes of electrical trees in polymeric insulating materials are complex and diverse, and the different shapes of the electrical trees have different fractal dimensions. In the present paper, box-counting dimension method is used though Matlab programming, for analyzing and calculating the fractal images of different shapes of electrical trees. The results show that the more complex the shapes of electrical trees is, the greater its box-counting fractal dimension and the local fractal dimension are. In the two-dimensional plane, the smaller of the box-counting dimension of electrical trees is, its space of spreading is greater and rate of spreading is faster. The stable local fractal dimension of different shapes of electrical trees is in a certain range, so electrical trees can be classified base on the fractal theory. Electrical trees at different growth stages and in complex shapes in polyethylene and polyethylene/ montmorillonite nanocomposites are analyzed and calculated based on the proposed method.
|
Received: 30 March 2012
Published: 27 November 2013
|
|
|
|
|
[1] Xiangrong Chen, Yang Xu, Xiaolong Cao. Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(3): 847-860. [2] Heming Wang, Yu Liu, Yongchen Song, et al. Fractal dimension analysis on pore structure of artificial cores using magnetic resonance imaging[C]. International Conference on Consumer Electronics, Communications and Networks, 2012: 2593-2596. [3] Zhihui Wang, Yong Tie, Shuhua Li, et al. Image fusion algorithm based on fractal dimension and contrast in multi-wavelet transform domain[C]. International Conference on Mechatronic Science, Electric Engineering and Computer, 2011: 1213-1217. [4] Qian Wang, Hezuo Gansu, Qipeng Zhang, et al. Design of quick computation program in fractal dimension for 2D victor data[C]. Second IITA International Conference on Geoscience and Remote Sensing, 2010: 124-126. [5] 李剑, 孙才新, 杜林, 等. 局部放电灰度图像分维数的研究[J]. 中国电机工程学报, 2002, 22(8): 1-5. Li Jian, Sun Caixin, Du Lin, et al. Study on fractal dimension of PD gray intensity image [J]. Proceedings of the CSEE, 2002, 22(8): 1-5. [6] 廖瑞金, 周春天, 刘玲, 等. 交联聚乙烯电力电缆电树枝生长的混沌特性分析[J]. 电工技术学报, 2012, 27(5): 63-69. Liao Ruijin, Zhou Tianchun, Liu Ling, et al. The chaos characteristics analysis for electrical treeing propagation in XLPE power cables[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 63-69. [7] Ansheng Xie, Xiaoquan Zheng, Shengtao Li, et al. Investigations of electrical trees in the inner layer of XLPE cable insulation using computer-aided image recording monitoring[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 685-693. [8] 谷琛, 严萍, 邵涛, 等. 基于分形理论的电介质放电仿真计算[J]. 高电压技术, 2006, 32(1): 1-4. Gu Chen, Yan Ping, Shao Tao, et al. Fractal simulation of breakdown in dielectric[J]. High Voltage Engineering, 2006, 32(1): 1-4. [9] Lin Jiaqi, Lei Qingquan. Computer simulation of fractal dimension in dielectric breakdown[C]. Conference Record of the ICDL '96 12th International Conference on Conduction and Breakdown in Dielectric Liquids, 1996: 346-349. [10] K Kudo. Fractal analysis of electrical trees[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 5(5): 713-727. [11] Fenggang Li, Weifeng Gong, Ying Li, et al. Research of fractal dimension calculation algorithm based on mobile box-counting method[C]. Seventh International Conference on Natural Computation, 2011: 1398- 1402. [12] 郝敏, 麻硕士. 盒维数在图像处理中的应用[C]. 第二届国际计算机及计算技术在农业中的应用研讨会, 2008: 24-27. [13] 贝淑坤. 红外光谱的计盒维数[J]. 扬州工学院学报, 1997, 9(1): 49-55. Bei Shukun. The box-counting dimensions of infrared absorption spectra[J]. Journal of Yangzhou Institute of Technology, 1997, 9(1): 49-55. [14] Ling Liu, Quan Zhou, Ruijin Liao, et al. The chaos characteristics analysis for electrical treeing propagation in XLPE power cables[C]. IEEE International Symposium on Electrical Insulation, 2008: 1-6. [15] Junhua Luo, Jung Tang, Baolong Sheng. The fractal dimension estimate of water tree in XLPE dielectric[C]. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Technology Conference, 2003: 177-179. [16] 杨书申, 邵龙义. MATLAB环境下图像分形维数的计算[J]. 中国矿业大学学报, 2006, 35(4): 478-481. Yang Shushen, Shao Longyi. Estimation of fractal dimensions of images based on MATLAB[J]. Journal of China University of Mining & Technology, 2006, 35(4): 478-481. [17] 李盛涛, 郑晓泉. 聚合物的电树枝化[M]. 北京: 机械工业出版社, 2006. [18] Nirupam Sarkar, B B Chaudhuri. An efficient differential box-counting approach to compute fractal dimension of image[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(1): 115-120. [19] (德)Heinz-Otto Peitgen. 混沌与分形[M]. 田逢春, 译. 北京:国防工业出版社, 2008. [20] 郑晓泉, G Chen, A E Davies. XLPE 电缆绝缘中的电树枝种类及其影响因素[J]. 电工电能新技术, 2003, 22(4): 21-24. Zheng Xiaoquan, G Chen, A E Davies. Types of electrical trees and influence factors in XLPE cable insulation[J]. Advanced Technology of Electrical Engineering and Energy, 2003, 22(4): 21-24. [21] 张晓虹, 高俊国, 张金梅, 等. 聚乙烯/蒙脱土纳米复合物的显微结构及其树枝化性能[J]. 电工技术学报, 2009, 24(12), 1-5. Zhang Xiaohong, Gao Junguo, Zhang Jinmei, et al. Characteristics of microstructure and electrical treeing in PE/MMT nanocomposites[J]. Transactions of China Electrotechnical Society, 2009, 24(12): 1-5. [22] 陈小梅, 倪国强. 基于局部分形维数的遥感图像分割[J]. 光电工程, 2008, 35(1): 136-139. Chen Xiaomei, Ni Guoqiang. Remote sensing image segmentation based on local fractal dimension[J]. Opto-Electronic Engineering, 2008, 35(1): 136-139. [23] 成永红, 谢小军, 陈玉, 等. 气体绝缘系统中典型缺陷的超宽频带放电信号的分形分析[J]. 中国电机工程技术学报, 2004, 24(8): 99-102. Cheng Yonghong, Xie Xiaojun, Chen Yu, et al. Study on the fractal characteristics of ultra-wideband partial discharge in gas-insulation system (GIS) with typical defects[J]. Proceedings of the CSEE, 2004, 24(8): 99-102. [24] 章华中, 李剑, 梁勇, 等. 低密度聚乙烯-蒙脱土纳米复合材料的电树枝生长特性[J]. 中国电机工程学报, 2010, 30(31):137-142. Zhang Huazhong, Li Jian, Liang Yong, et al. Growth properties of the electrical trees in LDPE-MMT Nawo-composites[J]. Proceedings of the CSEE, 2010, 30(31): 137-142. [25] 谢安生, 李盛涛, 郑晓泉. 高频电压下交联聚乙烯电缆绝缘中电树枝生长的动力学模型[J]. 物理学报, 2008, 57(6):3828-3833. Xie Ansheng, Li Shengtao, Zheng Xiaoquan. Dynamics model for electrical tree propagation in cross linked polyethylene cable insulation under high frequency voltage[J]. Acta Physica Sinica, 2008, 57(6): 3828-3833. [26] 郑晓泉, 谢安生, 李盛涛. 发展在XLPE电缆绝缘内外侧的电树枝[J]. 物理学报, 2007, 56(9):5490-5500. Zheng Xiaoquan, Xie Ansheng, Li Shengtao. The electrical trees that developed in inner and outer layer of XLPE cable insulation[J]. Acta Physica Sinica, 2007, 56(9):5490-5500. |
|
|
|