Initiation and Development Characteristics of Streamer Discharge of Sphere-Plane Gaps under Positive Switching Impulse in High Altitude Area
Fang Yaqi1, MaoSuhan1, Yang Binsen1, Gao Jiachen2, Zhang Xiaoxing1
1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment Hubei University of Technology Wuhan 430068 China; 2. College of Electrical and Information Engineering Hunan University Changsha 410082 China
Abstract:The valve hall in converter station, as an important part of China's extra-high voltage (EHV) and ultra-high voltage (UHV) project in high-altitude areas, has a large number of sphere-plane configurations inside. The study of sphere-plane gap discharge mechanism in high-altitude areas has practical engineering significance for the design of external insulation of EHV and UHV projects. In this paper, the switching impulse test of sphere-plane gaps with different sizes of sphere electrodes at gap distance of 1.0~3.0 m is carried out in Kunming area (altitude of 2 100 m). The discharge voltage, discharge current and optical images of different working conditions are collected by the high potential current acquisition device and the high speed camera. The discharge process, the dispersion of streamer initiation, streamer branch development characteristics, and the changing rules of the injected charge under different electrode structures and gap distances are analyzed. And the effects of the voltage rise rate on the streamer discharge parameters are also analyzed. On this basis, some of the initial parameters of the streamer are compared with those of the low altitude test, and the effect of altitude on the initial characteristics of the streamer is studied. The results show that the discharge process will be shortened with the increased altitude and reduced air pressure under the same working conditions. When the gap distance is 2.0 m and 3.0 m respectively, and the sphere diameter increases from 0.3 m to 0.9 m, the maximum increment of streamer inception time is 54.8% and 57.0% respectively, and its dispersion also increases. With the increasing gap distance, the streamer incepion time will be earlier. The streamer inception voltage increases with the increase of sphere electrode diameter and gap, and the influence of sphere electrode diameter on streamer inception voltage is more obvious. The injected charge of the streamer increase with the increasing gap distance and sphere diameter, which ranges from 1.1 μC to 15.6 μC. With the increase of sphere electrode diameter, the initial streamer length also increases obviously, but the gap length has little effect on the initial streamer length. During the process of initial streamer into final jump, the average development velocity of the main channel and sub-channel of the streamer branch ranges from 1.2~5.0 cm/μs and 0.8~2.6 cm/μs, respectively. At this stage, new branches may develop on the main channel and sub-channel, but the development speed is relatively stable. In the final jump, the main channel of the streamer branch develops rapidly until the breakdown, with an average development rate of about 10~25 cm/μs, and the sub-channel stops developing and then extinguishes. The streamer inception time and its dispersion decrease with the increasing applied voltage rise rate, and the injected charge increases with the increasing of streamer inception voltage and the voltage rise rate. It can be concluded that the voltage rise rate has obvious influence on the injected charge.
方雅琪, 毛苏涵, 杨炳森, 高嘉辰, 张晓星. 高海拔正极性操作冲击下球-板间隙流注起始发展特性[J]. 电工技术学报, 2024, 39(19): 6175-6186.
Fang Yaqi, MaoSuhan, Yang Binsen, Gao Jiachen, Zhang Xiaoxing. Initiation and Development Characteristics of Streamer Discharge of Sphere-Plane Gaps under Positive Switching Impulse in High Altitude Area. Transactions of China Electrotechnical Society, 2024, 39(19): 6175-6186.
[1] 周远翔, 陈健宁, 张灵, 等. “双碳”与“新基建”背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47(7): 2396-2408. Zhou Yuanxiang, Chen Jianning, Zhang Ling, et al.Opportunity for developing ultra high voltage transmission technology under the emission peak, carbon neutrality and new infrastructure[J]. High Voltage Engineering, 2021, 47(7): 2396-2408. [2] 孟沛彧, 向往, 潘尔生, 等. 分址建设直流输电系统拓扑方案与运行特性研究[J]. 电工技术学报, 2022, 37(19): 4808-4822. Meng Peiyu, Xiang Wang, Pan Ersheng, et al.Research on topology and operation characteristics of HVDC transmission system based on site-division construction[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 4808-4822. [3] 张少玉, 周艳青, 罗永吉. 高海拔地区变电站500kV高抗回路隔离开关断口优化研究[J]. 电气技术, 2019, 20(1): 84-87. Zhang Shaoyu, Zhou Yanqing, Luo Yongji.The research on optimized breakage of disconnector used for 500kv high voltage shunt reactor in high altitude area[J]. Electrical Engineering, 2019, 20(1): 84-87. [4] 郭贤珊, 丁玉剑, 姚修远, 等. ±1100kV特高压直流换流站球-板间隙放电特性及取值研究[J]. 中国电机工程学报, 2020, 40(11): 3701-3710. Guo Xianshan, Ding Yujian, Yao Xiuyuan, et al.Flashover characteristics of sphere-plane gap and distance selection for ±1100kV UHVDC converter stations[J]. Proceedings of the CSEE, 2020, 40(11): 3701-3710. [5] 刘鹏, 郭伊宇, 吴泽华, 等. 特高压换流站大尺寸典型电极起晕特性的仿真与试验[J]. 电工技术学报, 2022, 37(13): 3431-3440. Liu Peng, Guo Yiyu, Wu Zehua, et al.Simulation and experimental study on corona characteristics of large size typical electrodes used in UHV converter station[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3431-3440. [6] Chen She, Zeng Rong, Zhuang Chijie, et al.Switching impulse breakdown characteristics of large sphere-plane air gaps compared with rod-plane air gap[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3): 839-844. [7] 张炜, 杨国华, 李勇杰, 等. 高海拔地区特高压换流站典型电极起晕特性与均压屏蔽电极设计[J]. 高压电器, 2022, 58(4): 124-130. Zhang Wei, Yang Guohua, Li Yongjie, et al.Corona inception characteristics and design of grading shielding electrode of typical electrode in UHV converter station in high altitude area[J]. High Voltage Apparatus, 2022, 58(4): 124-130. [8] 刘鹏, 郭伊宇, 林锐, 等. 应用电场强度等效法的特高压交流双回线路双摆防舞器电晕试验及优化设计[J]. 电工技术学报, 2022, 37(15): 3963-3972. Liu Peng, Guo Yiyu, Lin Rui, et al.Equivalent electric field strength method used in corona test and optimization design of double-swinging protectors for UHVAC double circuit tension support[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3963-3972. [9] 黄道春, 范建斌, 王平, 等. 极端环境条件下输变电设备空气间隙绝缘特性研究现状及展望[J]. 高电压技术, 2023, 49(5): 1892-1906. Huang Daochun, Fan Jianbin, Wang Ping, et al.Current status and future prospects of transmission and transformation equipment air gap insulation characteristics under extreme natural environmental conditions[J]. High Voltage Engineering, 2023, 49(5): 1892-1906. [10] Pancheshnyi S, Nudnova M, Starikovskii A.Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation[J]. Physical Review E, 2005, 71: 016407. [11] Popov N A.Study of the formation and propagation of a leader channel in air[J]. Plasma Physics Reports, 2009, 35(9): 785-793. [12] da Silva C L, Pasko V P. Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(24): 13561-13590. [13] da Silva C L, São Sabbas F T. Consequences of the application of the streamer fluid model to the study of the sprite inception mechanism[J]. Advances in Space Research, 2013, 51(10): 1902-1915. [14] Ma Xinyu, Zhuang Chijie, Wang Zezhong, et al.Positive leader velocity and discharge current considering leader branching under different air pressures[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 1939-1943. [15] 孟晓波, 惠建峰, 卞星明, 等. 低气压下流注放电特性的研究[J]. 中国电机工程学报, 2011, 31(25): 139-149. Meng Xiaobo, Hui Jianfeng, Bian Xingming, et al.Research on the characteristic of streamer discharge at low air pressure[J]. Proceedings of the CSEE, 2011, 31(25): 139-149. [16] 孟晓波, 梅红伟, 陈昌龙, 等. 气压与湿度对绝缘介质表面流注发展特性影响的试验研究[J]. 中国电机工程学报, 2014, 34(12): 1938-1947. Meng Xiaobo, Mei Hongwei, Chen Changlong, et al.Experimental research on influences of air pressure and humidity on characteristics of streamer propa-gation along insulation surfaces[J]. Proceedings of the CSEE, 2014, 34(12): 1938-1947. [17] 夏喻, 李卫国, 陈艳. 高空下棒-板间隙直流放电特性及电压校正[J]. 电工技术学报, 2018, 33(9): 2115-2120. Xia Yu, Li Weiguo, Chen Yan.DC discharge performance and voltage correction of air gaps under high altitude[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2115-2120. [18] 张志劲, 蒋兴良, 孙才新, 等. 高海拔现场与人工气候室下绝缘子交流污闪特性的比较[J]. 电网技术, 2012, 36(2): 163-169. Zhang Zhijin, Jiang Xingliang, Sun Caixin, et al.Comparison of AC pollution flashover performances of insulators in high altitude sites with that in chamber climate[J]. Power System Technology, 2012, 36(2): 163-169. [19] 耿江海, 陈雅茜, 王平, 等. 正极性操作冲击下球-板长间隙流注-先导转化模型[J]. 中国电机工程学报, 2021, 41(8): 2919-2929. Geng Jianghai, Chen Yaxi, Wang Ping, et al.Streamer-to-leader transition model of sphere-plane long air gap at positive switching impulse voltage[J]. Proceedings of the CSEE, 2021, 41(8): 2919-2929. [20] 王平, 肖智勇, 汪鑫宇, 等. 高海拔正极性操作波下放电起始时延特性[J]. 高电压技术, 2022, 48(3): 857-864. Wang Ping, Xiao Zhiyong, Wang Xinyu, et al.Streamer inception time delay characteristics under high altitude positive switching impulse voltage[J]. High Voltage Engineering, 2022, 48(3): 857-864. [21] Geng Jianghai, Cheng Yuzhou, Wang Ping, et al.Distribution characteristics for initial time delay of streamer of shielding spheres under operating impulse voltage at high altitudes[J]. Journal of Physics D: Applied Physics, 2022, 55(34): 345203. [22] 王平, 陈雅茜, 姚修远, 等. 海拔2200m地区正极性操作冲击下大尺寸球-板间隙放电转化特性[J]. 中国电机工程学报, 2023, 43(15): 6112-6124. Wang Ping, Chen Yaxi, Yao Xiuyuan, et al.Discharge conversion characteristics of large size sphere-plane gap under positive switching impulse voltage at altitude of 2200m[J]. Proceedings of the CSEE, 2023, 43(15): 6112-6124. [23] Gao Jiachen, Wang Linong, Wu Shaocheng, et al.Experimental platform for measuring electrical discharges in long air gaps with floating objects and its applications under lightning impulse[J]. IEEE Sensors Journal, 2023, 23(3): 3103-3114. [24] 刘晓鹏, 赵贤根, 刘磊, 等. 长空气间隙放电通道的绝缘恢复特性[J]. 电工技术学报, 2021, 36(2): 380-387. Liu Xiaopeng, Zhao Xiangen, Liu Lei, et al.Characteristics of the discharge channel during the relaxation process in the long air gap[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 380-387. [25] 程晨, 陈维江, 贺恒鑫, 等. 基于脉冲定量纹影系统的正先导放电起始阶段通道瞬态温度测量[J]. 电工技术学报, 2023, 38(23): 6483-6493. Cheng Chen, Chen Weijiang, He Hengxin, et al.Experimental measurement on the transient temperature evolution of positive initial leader channel based on pulse-driven quantitative schlieren system[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6483-6493. [26] 国家质量监督检疫检验总局, 国家标准化管理委员会. 高电压试验技术第1部分:一般定义及试验要求: GB/T 16927.1—2011[S]. 北京: 中国标准出版社, 2012. [27] Fang Yaqi, Mao Suhan, Yang Bingsen, et al.Experimental study on streamer-leader transition characteristics of sphere-plane gap in valve hall under positive switching impulse voltage[J]. Journal of Electrostatics, 2023, 125: 103829. [28] Gallimberti I, Bacchiega G, Bondiou-Clergerie A, et al.Fundamental processes in long air gap discharges[J]. Comptes Rendus Physique, 2002, 3(10): 1335-1359. [29] Xie Shijun, He Junjia, Chen Weijiang.An improved model to determine the inception of positive upward leader-streamer system considering the leader propagation during dark period[J]. Physics of Plasmas, 2013, 20(4): 042107. [30] Bondiou A, Gallimberti I.Theoretical modelling of the development of the positive spark in long gaps[J]. Journal of Physics D: Applied Physics, 1994, 27(6): 1252-1266. [31] Gu Jianwei, Huang Shengxin, Fu Yufei, et al.Morphological characteristics of streamer region for long air gap positive discharge[J]. Journal of Physics D: Applied Physics, 2021, 54(2): 025205. [32] 谷山强, 谢施君, 向念文, 等. 长间隙正极性放电流注-先导发展3维物理仿真研究[J]. 高电压技术, 2014, 40(9): 2903-2910. Gu Shanqiang, Xie Shijun, Xiang Nianwen, et al.Research on simulation of three-dimensional streamer-leader propagation for positive long gap discharge[J]. High Voltage Engineering, 2014, 40(9): 2903-2910. [33] 彭长志, 董旭柱, 赵彦普, 等. 正极性先导起始与发展过程中的等离子体特征[J]. 电工技术学报, 2023, 38(2): 533-541. Peng Changzhi, Dong Xuzhu, Zhao Yanpu, et al.Plasma characteristics of positive leader inception and development[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 533-541.