电工技术学报
论文 |
基于微型气体传感阵列的空气绝缘设备放电故障识别方法
王琼苑, 褚继峰, 李秋霖, 杨爱军, 袁欢, 荣命哲, 王小华
电力设备电气绝缘国家重点实验室(西安交通大学)西安 710049
Miniature Gas-sensing Array Employed for the Discharge Fault Diagnosis of Air-insulated Equipment
Wang Qiongyuan, Chu Jifeng, Li Qiulin, Yang Aijun, Yuan Huan, Rong Mingzhe, Wang Xiaohua
State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China
全文: PDF (1862 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

空气作为一种天然的绝缘气体,在电力设备中(开关柜、环网柜等)被广泛应用。研究表明,当电力设备发生放电故障时,空气绝缘介质会产生以NO2为代表的特征分解产物。放电分解产物的组分及含量能够反映放电故障的严重程度。因此,气体分解产物检测对电力系统安全稳定运行具有重要意义。在不同的电压等级、持续时间下,该文分别模拟了包括电晕放电、火花放电、以及电弧放电在内的15种空气放电故障,并发现NO2气体的含量在不同故障条件下存在显著差异。对此,设计了一款装载有四种对NO2气体具有高度选择性气敏材料的微型气体传感阵列。经多次实验测试,传感阵列对15种放电故障气体表现出差异性响应信号,构成丰富的样本数据集。分别采用四种机器学习算法(极限树、决策树、K邻近和随机森林)实现基于传感信号的空气放电故障识别,发现其平均准确率最高可达84.88%、81.82%、76.86%和81.32%。其中,传感阵列对局部放电和电弧放电的识别能力略高于火花放电,可以归因于多次火花放电过程中存在一定的NO2饱和现象。综上所述,该文提出的基于微型气体传感阵列的检测方法具有操作简单,识别准确率高的显著优势,在空气放电故障诊断领域具有广阔的应用前景。

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王琼苑
褚继峰
李秋霖
杨爱军
袁欢
荣命哲
王小华
关键词 空气绝缘放电故障模拟NO2检测微型传感阵列故障诊断    
Abstract

As a natural insulating gas, air is widely used in power equipment (switchgear, ring cabinets, etc.). It will produce characteristic decomposition products represented by NO2 when the power equipment occurs internal faults. The content of composition reflects the severity of the discharge fault. Therefore, the detection of gas decomposition products is helpful to the stable operation of power equipment. The cross-sensitivity of the sensor materials towards NO2 and CO have seriously restricted the accuracy of fault diagnosis. To address these issues, this paper develops a miniature gas-sensing array with high sensitivity and great reliability, which aimed for the discharge fault diagnosis of air-insulated equipment.
This paper has simulated 15 air discharge faults including corona discharge, spark discharge, and arc discharge at different voltage levels and durations. After that, Fourier infrared tests were performed on the 15 gas samples. However, there has no apparent absorption peak of CO and O3 in the infrared absorption spectrum. The absorption peak in 1 650~1 550 cm-1 band corresponds to the antisymmetric stretching vibration of O=N=O chemical bond. This indicates the presence of NO2 in the decomposition products of air. Besides, discharge with different voltages and times shows significant differences in the content of NO2.
To discriminate fault characteristic gases, this paper has integrated a micro sensor array loaded with four gas-sensitive nanomaterials (10%WO3-10%SnCl2-In2O3, 5%NiO-10%SnCl2-In2O3, 10%TiO2-10%SnCl2-In2O3 and 5%SnO2-10%SnCl2- In2O3). Then the paper obtains the repeatable gas response recovery curves under different discharge faults, which lays the foundation for the construction of gas identification model. The results demonstrate that the higher voltage and the longer discharge time means the larger response value of sensor array. Accordingly, it is further proved that the higher air-discharge voltages and times generates more characteristic decomposition gas. In addition, t-SNE dimensionality reduction has been employed to explore the identification ability of miniature gas-sensing array. The identification results of different air discharge faults are 84.88%, 81.82%, 76.86%, and 81.32% by four machine learning algorithms (Extra Tree, Decision Tree, KNN, and RF) respectively. And the recognition ability of the micro gas sensing array for partial discharge and arc discharge is slightly higher than that of spark discharge. The essential reason can be ascribed to the saturation of NO2 in the process of multiple spark discharges.
The following conclusions can be drawn from the simulation analysis: (1) The FTIR of air discharge products shows that the arc discharge (200~400 μL/L) produces more NO2 than corona and spark discharge (10~50 μL/L). Besides, the NO2 concentration increases with the increase of discharge voltage and discharge time (times). (2) Compared with corona and spark discharge, the response value of the micro sensor array towards arc discharge products (6 kV, 4 033%) is nearly 3 times higher than that of spark discharge (15 kV, 5 times, 1 142.8%). (3) After the feature reduction of 10-dimensional PCA, we compared four machine learning algorithms, and found that the Extra Tree algorithm obtained the best identification accuracy of air discharge fault (84.88%).

Key wordsAir insulation    discharge simulation    NO2 detection    micro sensor array    fault diagnosis   
收稿日期: 2023-01-13     
PACS: TM930  
基金资助:

国家自然科学基金(U2166214, 52207170)、中国博士后科学基金(2022M712510, 2022TQ0252)和西安交通大学分析测试共享中心资助项目

通讯作者: 杨爱军 男,1986年生,教授,博士生导师,研究方向为微纳传感器、能量收集、人工智能技术。E-mail:yangaijun@mail.xjtu.edu.cn   
作者简介: 王琼苑 女,1998年生,博士研究生,研究方向为电力装备智能感知与运行维护。E-mail:wqy13994558885@stu.xjtu.edu.cn
引用本文:   
王琼苑, 褚继峰, 李秋霖, 杨爱军, 袁欢, 荣命哲, 王小华. 基于微型气体传感阵列的空气绝缘设备放电故障识别方法[J]. 电工技术学报, 0, (): 149-149. Wang Qiongyuan, Chu Jifeng, Li Qiulin, Yang Aijun, Yuan Huan, Rong Mingzhe, Wang Xiaohua. Miniature Gas-sensing Array Employed for the Discharge Fault Diagnosis of Air-insulated Equipment. Transactions of China Electrotechnical Society, 0, (): 149-149.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.L10079          https://dgjsxb.ces-transaction.com/CN/Y0/V/I/149