Bionic Structure and Cyber-Physical System for Intelligent Power Plant Oriented to the Industrial Internet
Xiao Xiangwu1,2,3, Wang Feng1,2, Wang Xiaohui1,2, Zhou Honggui3, Zhang Liao1,2
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. Hunan Key Laboratory of Intelligent Information Analysis and Integrated Optimization for Energy Internet Hunan University Changsha 410082 China; 3. Hunan Datang Xianyi Technology Co. Ltd Changsha 410002 China
Abstract:The traditional structure of thermal power plant can hardly meet the demand of smart production and management, and the intelligent power plant has become a new trend. Based on the concept of the Industrial Internet, this article proposes a smart power plant bionic system and DNA conceptual model using bionics principles and methods, and analyzes the evolution process of its iterative development and system interaction. Fully considering the influence of human behavior and social factors on the information physical system, the framework and components of the bionic human/society-cyber-physical system for intelligent power plant are further analyzed. On this basis, the hierarchical structure of the industrial Internet platform for intelligent power plant is constructed according to the hierarchical structures of cells. The structure and cyber-physical system proposed can better solve the problem of information islands in existing thermal power plants and promote the deep integration of the human/society-information-physical ternary. Meanwhile, they can provide methodology and implementation reference for intelligent management, intelligent power generation, multi-market decision-making and other multi-agent construction of smart power plants.
肖祥武, 王丰, 王晓辉, 周宏贵, 张辽. 面向工业互联网的智慧电厂仿生体系架构及信息物理系统[J]. 电工技术学报, 2020, 35(23): 4898-4911.
Xiao Xiangwu, Wang Feng, Wang Xiaohui, Zhou Honggui, Zhang Liao. Bionic Structure and Cyber-Physical System for Intelligent Power Plant Oriented to the Industrial Internet. Transactions of China Electrotechnical Society, 2020, 35(23): 4898-4911.
[1] 李培楠, 万劲波. 工业互联网发展与“两化”深度融合[J]. 中国科学院院刊, 2014, 29(2): 215-222. Li Peinan, Wan Jinbo.Development of industrial internet and deep integration of informatization and industrialization[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(2): 215-222. [2] Rojko A.Industry 4.0 concept: background and overview[J]. International Journal of Interactive Mobile Technologies, 2017, 11(5): 77-90. [3] 王喜文. 工业4.0、互联网+、中国制造2025中国制造业转型升级的未来方向[J]. 国家治理, 2015(23): 12-19. Wang Xiwen. Industry 4, Internet +, China manufacturing2025 the future direction of transformation and upgrading of China's manufacturing industry[J]. Governance, 2015(23): 12-19. [4] 国家能源局. 关于推进“互联网+”智慧能源发展的指导意见[EB/OL]. [2016-02-29]. http://www. nea. gov. cn/2016-02/29/c_135141026. htm. [5] Ceglia F, Esposito P, Marrasso E, et al.From smart energy community to smart energy municipalities: literature review, agendas and pathways[J]. Journal of Cleaner Production, 2020, 254(3): 118-120. [6] 刘吉臻, 胡勇, 曾德良, 等. 智能发电厂的架构及特征[J]. 中国电机工程学报, 2017, 37(22): 6463-6470. Liu Jizhen, Hu Yong, Zeng Deliang, et al.Architecture and feature of smart power generation[J]. Proceedings of the CSEE, 2017, 37(22): 6463-6470. [7] 张晋宾, 周四维. 智能电厂概念及体系架构模型研究[J]. 中国电力, 2018, 51(10): 2-7. Zhang Jinbin, Zhou Siwei.Study on the concept of the smart power plant and its architecture model[J]. Electric Power, 2018, 51(10): 2-7. [8] 崔青汝, 李庚达, 牛玉广. 电力企业智能发电技术规范体系架构[J]. 中国电力, 2018, 51(10): 32-36. Cui Qingru,Li Gengda,Niu Yuguang.Architecture of the intelligent power generation technical specification for electric power enterprises[J]. Electric Power, 2018, 51(10): 32-36. [9] 潘玉松, 陈旭伟, 张鹏. 传统火电厂建设智慧电厂的典型方向及构架体系[J]. 分布式能源, 2018, 3(5): 48-53. Pan Yusong, Chen Xuwei, Zhang Peng.Typical direction and structure of a smart power plant based on traditional thermal power plant[J]. Distributed Energy, 2018, 3(5): 48-53. [10] 尹峰. 智能发电平行控制技术架构及核心应用[J]. 自动化博览, 2019(9): 42-47. Yin Feng.Parallel control technology architecture and core application for smart power generation[J]. Automation Panorama, 2019(9): 42-47. [11] Mosterman P J, Zander J.Industry 4.0 as a cyber-physical system study[J]. Software & Systems Modeling, 2016, 15(1): 17-29. [12] Krishna Keerthi Ch, Jabbar M A, Seetharamulu B.Cyber physical systems(CPS):security issues, challenges and solutions[C]//2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, 2017: 1-4. [13] 沈苏彬, 杨震. 工业互联网概念和模型分析[J]. 南京邮电大学学报: 自然科学版, 2015, 35(5): 1-10. Shen Subin, Yang Zhen.Analysis on the concepts and models of the industrial internet[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science Edition, 2015, 35(5):1-10. [14] Cogliati D, Falchetto M, Pau D, et al.Intelligent cyber-physical systems for industry 4.0[C]//2018 First International Conference on Artificial Intelligence for Industries (AI4I), Laguna Hills, 2018: 19-22. [15] Leitão P, Colombo A W, Karnouskos S.Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges[J]. Computers in Industry, 2016, 81: 11-25. [16] Tao Fei, Qi Qinglin, Wang Lihui, et al.Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: acorrelation and comparison[J]. Engineering, 2019, 5(4): 653-661. [17] Yli-Ojanperä M, Sierla S, Papakonstantinou N, et al.Adapting an agile manufacturing concept to the reference architecture model industry 4.0: a survey and case study[J]. Journal of Industrial Information Integration, 2019, 15: 147-160. [18] Menon K, Kärkkäinen H, Wuest T, et al.Industrial internet platforms: a conceptual evaluation from a product lifecycle management perspective[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(5): 1390-1401. [19] 赵敏. 工业互联网平台的六个支撑要素——解读《工业互联网平台白皮书》[J]. 中国机械工程, 2018, 29(8): 1000-1007. Zhao Min.Six supporting elements of industrial Internet platform—interpretation of white paper on industrial Internet platform[J]. China Mechanical Engineering, 2018, 29(8): 1000-1007. [20] 郭楠, 贾超. 《信息物理系统白皮书(2017)》解读(下)[J].信息技术与标准化, 2017(5): 42-47. Guo Nan, Jia Chao. Interpretation of “cyber-physical systems white paper(2017)”(part two)[J]. Information Technology & Standardization, 2017(5): 42-47. [21] Zhou Ji, Zhou Yanhong, Wang Baicun, et al.Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5(4): 624-636. [22] 王柏村, 臧冀原, 屈贤明, 等. 基于人-信息-物理系统(HCPS)的新一代智能制造研究[J]. 中国工程科学, 2018, 20(4): 29-34. Wang Baicun, Zang Jiyuan, Qu Xianming, et al.Research on new-generation intelligent manufacturing based on human-cyber-physical systems[J]. Strategic Study of CAE, 2018, 20(4): 29-34. [23] Wang Puming, Yang L T, Li Jintao, et al.Data fusion in cyber-physical-social systems: state-of-the-art and perspectives[J]. Information Fusion, 2019, 51: 42-57. [24] Yilma B A, Panetto H, Naudet Y.A eeta-model of cyber-physical-social system: the CPSS paradigm to support human-machine collaboration in industry 4.0[C]//Working Conference on Virtual Enterprises. Springer, Cham, 2019: 11-20. [25] Wang Feiyue.The emergence of intelligent enterprises: from CPS to CPSS[J]. IEEE Intelligent Systems, 2010, 25(4): 85-88. [26] 王飞跃. 软件定义的系统与知识自动化:从牛顿到默顿的平行升华[J]. 自动化学报, 2016, 41(1): 1-7. Wang Feiyue.Software-defined systems and knowledge automation:a parallel paradigm shift from Newton to Merton[J]. Acta Automatica Sinica, 2016, 41(1): 1-7. [27] 景轩, 姚锡凡. 走向社会信息物理生产系统[J]. 自动化学报, 2019, 45(4): 637-656. Jing Xuan, Yao Xifan.Towards social cyber-physical production systems[J]. Acta Automatica Sinica, 2019, 45(4): 637-656. [28] Xue Yusheng, Yu Xinghuo.Beyond smart grid-cyber-physical-social system in energy future [point of view][J]. Proceedings of the IEEE, 2017, 105(12): 2290-2292. [29] Guan Xiaohong, Xu Zhanbo, Jia Qingshan, et al.Cyber-physical model for efficient and secured operation of CPES or energy internet[J]. Science China Information Sciences, 2018, 61(11): 110201. [30] Shi Libao, Dai Qiangsheng, Ni Yixin.Cyber-physical interactions in power systems:a review of models, methods, and applications[J]. Electric Power Systems Research, 2018, 163: 396-412. [31] Poudel S, Ni Zhen, Malla N.Real-time cyber physical system testbed for power system security and control[J]. International Journal of Electrical Power & Energy Systems, 2017, 90: 124-133. [32] Shi Xingyu, Li Yong, Cao Yijia, et al.Cyber-physical electrical energy systems: challenges and issues[J]. CSEE Journal of Power and Energy Systems, 2015, 1(2): 36-42. [33] Khan M A I, Hossain G, Challoo R. Towards a sustainable cyber-physical energy system design[C]//2016 19th International Conference on Computer and Information Technology (ICCIT), Dhaka, 2016: 469-473. [34] 刘念, 余星火, 王剑辉, 等. 泛在物联的配用电优化运行: 信息物理社会系统的视角[J]. 电力系统自动化, 2020, 44(1): 1-12. Liu Nian, Yu Xinghuo, Wang Jianhui, et al.Optimal operation of power distribution and consumption system based on ubiquitous internet of things:a cyber-physical-social system perspective[J]. Automation of Electric Power Systems, 2020, 44(1): 1-12. [35] 柳文轩, 赵俊华, 黄杰, 等. 面向能源领域信息物理社会系统的行为仿真建模分析——以现货电力市场为例[J]. 电力系统自动化, 2020, 44(4): 8-17. Liu Wenxuan, Zhao Junhua, Huang Jie, et al.Simulation and modelling analysis on behavior of cyber physical social system in energy: a case in electricity spot market[J]. Automation of Electric Power Systems, 2020, 44(4): 8-17. [36] 杨秋霞, 袁冬梅, 郭小强, 等. CPS概念下基于事件触发且考虑通信丢包及扰动的微网分层控制策略[J]. 电工技术学报, 2019, 34(15): 3209-3221. Yang Qiuxia, Yuan Dongmei, Guo Xiaoqiang, et al.An event-triggered hierarchical control strategy based on concept of CPS for micro-grid considering with packet loss and communication disturbance[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3209-3221. [37] 盛万兴, 段青, 梁英, 等. 面向能源互联网的灵活配电系统关键装备与组网形态研究[J]. 中国电机工程学报, 2015, 35(15): 3760-3769. Sheng Wanxing, Duan Qing, Liang Ying, et al.Research of power distribution and application grid structure and equipment for future energy internet[J]. Proceedings of the CSEE, 2015, 35(15): 3760-3769. [38] Yu Xinghuo, Xue Yusheng.Smart grids: a cyber-physical systems perspective[J]. Proceedings of the IEEE, 2016, 104(5): 1058-1070. [39] 程乐峰, 余涛, 张孝顺, 等. 信息-物理-社会融合的智慧能源调度机器人及其知识自动化:框架、技术与挑战[J]. 中国电机工程学报, 2018, 38(1): 25-40. Cheng Lefeng, Yu Tao, Zhang Xiaoshun, et al.Cyber-physical-social systems based smart energy robotic dispatcher and its knowledge automation: framework, techniques and challenges[J]. Proceedings of the CSEE, 2018, 38(1) : 25-40. [40] Gu Yunqing, Fan Tianxing, Mou Jiegang, et al.Advances in researches on Bionics[J]. Journal of Biomimetics, Biomaterials and Biomedical, 2015, 25: 3-11. [41] 覃小航. 仿生学在工业设计中的运用[J]. 南方农机, 2018, 49(20): 223. Qin Xiaohang.Application of bionics in industrial design[J]. China Southern Agricultural Machinery, 2018, 49(20): 223. [42] Morozov A.Modelling biological evolution: Linking mathematical theories with empirical realities[J]. Journal of Theoretical Biology, 2016, 405: 1-4. [43] 艾芊, 郝然. 多能互补、集成优化能源系统关键技术及挑战[J]. 电力系统自动化, 2018, 42(4): 1-10, 46. Ai Qian, Hao Ran.Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4): 1-10, 46. [44] 韩佶, 苗世洪, 李超, 等. 计及相关性的电-气-热综合能源系统概率最优能量流[J]. 电工技术学报, 2019, 34(5): 1055-1067. Han Ji, Miao Shihong, Li Chao, et al.Probabilistic optimal energy flow of electricity-gas-heat integrated energy system considering correlation[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1055-1067. [45] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al.A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [46] 韦晓广, 高仕斌, 臧天磊, 等. 社会能源互联网:概念、架构和展望[J]. 中国电机工程学报, 2018, 38(17): 4969-4986. Wei Xiaoguang, Gao Shibin, Gao Shibin, et al.Social energy internet: concept, architecture and outlook[J]. Proceedings of the CSEE, 2018, 38(17): 4969-4986. [47] Nam L, Anthony B, Michael O.The evolution of self-taught neural networks in a multi-agent environment[C]//International Conference on the Applications of Evolutionary Computation, Leipzig, 2019: 457-472. [48] Chemezov A V, Strakhov A G, Bakshaeva N M.Algorithm for the optimization of multiagent isolated energy systems[J]. Applied Solar Energy, 2019, 55(1): 66-70. [49] Herzallah A M, Gutiérrez-Gutiérrez L, Munoz Rosas J F. Total quality management practices, competitive strategies and financial performance: the case of the palestinian industrial SMEs[J]. Total Quality Management & Business Excellence, 2014, 25(5-6): 635-649. [50] Koryagin S, Klachek P, Vasileva V.Development of bionic approaches in the microelectromechanical systems design based on cognitive knowledge bank[C]//2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), lviv, 2017: 285-288. [51] 徐久强, 郭雪静, 王进法, 等. CPS资源服务模型和资源调度研究[J]. 计算机学报, 2018, 41(10): 2330-2343. Xu Jiuqiang, Guo Xuejing, Wang Jinfa, et al.Research on CPS resource service model and resource scheduling[J]. Chinese Journal of Computers, 2018, 41(10): 2330-2343. [52] 张慧, 卢文冰, 赵雄文, 等. 基于最小二乘支持向量机和小波神经网络的电力线通信信道噪声建模研究[J]. 电工技术学报, 2018, 33(16): 3879-3888. Zhang Hui, Lu Wenbing, Zhao Xiongwen, et al.Noise modeling for power line communication channel using the LS-SVM and wavelet neural networks[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3879-3888. [53] 黄珍锡. 仿生软件体系结构及其复杂度研究[D]. 武汉: 华中科技大学, 2015. [54] Rocha M S, Sestito G S, Dias A L, et al.Performance Comparison Between OPC UA and MQTT for Data Exchange[C]//2018 Workshop on Metrology for Industry 4.0 and IoT, Brescia, 2018: 175-179. [55] 王鹏程. 基于协议转换与OPC技术的数据采集系统研究[D]. 济南: 山东大学, 2018. [56] 刘洋. 基于边缘计算的数据获取与处理系统设计与实现[D]. 北京: 北京工业大学, 2018. [57] Augustin A, Yi Jiazi, Clausen T, et al.A study of LoRa: long range & low power networks for the internet of things[J]. Sensors, 2016, 16(9): 1466. [58] Yan H .Design of smart home gateway based on ZigBee technology[C]//2018International Conference on Intelligent Transportation, Big Data & Smart City(ICITBS), Xiamen, 2018: 25-26. [59] 左剑, 谢平平, 李银红, 等. 基于智能优化算法的互联电网负荷频率控制器设计及其控制性能分析[J]. 电工技术学报, 2018, 33(3): 478-489. Zuo Jian, Xie Pingping, Li Yinhong, et al.Intelligent optimization algorithm based load frequency controller design and its control performance assessment in interconnected power grids[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 478-489. [60] 王力, 赵洁, 刘涤尘, 等. 基于遗传粒子群优化算法的调速器执行机构分段线性模型及参数辨识[J]. 电工技术学报, 2016, 31(12): 204-210. Wang Li, Zhao Jie, Liu Dichen, et al.Piecewise linear model and parameter identification of governor actuator based on genetic particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 204-210.