Simulation and Experiment on Airarc Characteristics in Low-Voltage Circuit Breaker Considering Wall Ablation
Ma Qiang1, Rong Mingzhe1, Anthony B. Murphy2, Wu Yi1, Xu Tiejun1, Sun Zhiqiang1
1. State Key Lab of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China 2. CSIRO Industrial Physics Lindfield NSW 2070 Australia
Abstract:The mathematical model of 3-dimentional air arc plasma considering the ablation of lateral walls is set up based on magnetic hydro-dynamics (MHD). The mass concentration equation is introduced to the model on the basis of traditional mass, momentum and energy equations. The influence of wall ablation on the thermodynamic and transport properties is considered. The method of “view factors” is used to calculate the radiation reaching the lateral wall. By adopting the commercial computational fluid dynamics (CFD) package based on control-volume method, the above MHD model is solved and the distribution of temperature field, concentration field, flow field and electrical potential field in the arc chamber is calculated. The simulation results indicate that the vapor concentration behind the arc column is higher than that in front of the arc column because of the existence of “vortex” in the arc chamber. The use of gassing material causes arc voltage increase 19.2%, and causes the average arc velocity increase 20.1%. The experimental results prove the validity of the arc model.
马强, 荣命哲, AnthonyB.Murphy, 吴翊, 徐铁军, 孙志强. 考虑器壁侵蚀影响的低压断路器电弧运动特性仿真及实验[J]. 电工技术学报, 2009, 24(12): 74-81.
Ma Qiang, Rong Mingzhe, Anthony B. Murphy, Wu Yi, Xu Tiejun, Sun Zhiqiang. Simulation and Experiment on Airarc Characteristics in Low-Voltage Circuit Breaker Considering Wall Ablation. Transactions of China Electrotechnical Society, 2009, 24(12): 74-81.
[1] Shea J J. The influence of arc chamber wall material on arc gap dielectric recovery voltage[J]. IEEE Transactions on Components, Packaging and Manu- facturing Technology, 2001, 24(3): 342-348. [2] McBride J W, Pechrach K, Weaver P M. Arc motion and gas flow in current limiting circuit breakers operating with a low contact switching velocity[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2002, 25(3): 427-433. [3] McBride J W, Pechrach K, Weaver P M. Arc root commutation from moving contacts in low voltage devices[J]. IEEE Transactions on Components, Packa- ging and Manufacturing Technology, 2001, 24(3): 331-336. [4] Doméjean E, Chévrier P, Fiévet C, et al. Arc-wall interaction modeling in a low-voltage circuit breaker[J]. J. Phys.D: Appl.Phys., 1997, 30(4): 2132-2142. [5] Patankar S V. Numerical heat transfer and fluid flow[M]. New York: McGraw-Hill, 1980. [6] Swierczynski B, Gonzalez J J, Teulet P, et al. Advances in low-voltage circuit breaker modeling[J]. J.Phys.D: Appl.Phys., 2004, 37(4): 595-609. [7] Gonzalez J J, Gleizes A. Mathematical modeling of a free-burning arc in the presence of metal vapor[J]. J.Appl.Phys., 1993, 74(5): 3065-3070. [8] Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc[J]. J.Appl.Phys., 1983, 54(3): 1293-1301. [9] Zhang Jinling, Yan Jiudun, Michael T C Fang. Electrode evaporation and its effects on thermal arc behavior[J]. IEEE Transactions on Plasma Science, 2004, 32(3): 1352-1361. [10] Yang Qian, Rong Mingzhe, Anthony B Murphy, et al. The influence of magnetic field, chamber geometry and polymer vapour on low-voltage circuit breaker arcs[C]. IEICE Technical Report EMD, 2005: 80. [11] 吴翊, 荣命哲, 杨茜, 等. 低压空气电弧动态仿真及分析[J]. 中国电机工程学报, 2005, 25(21): 143-148. [12] Lago F, Gonzalez J J, Fretont P Gleizes A, et al. A numerical modeling of an electric arc and its interaction with the anode: Part I. The two- dimensional model[J]. J.Phys.D: Appl.Phys., 2004, 37(4): 883-897. [13] 杨茜, 荣命哲, 吴翊. 低压断路器中空气电弧运动的仿真及实验研究[J]. 中国电机工程学报, 2006, 26(15): 89-94. [14] Kovitya P. Theoretical determination of material functions of plasmas formed from ablated PTFE, alumina, PVC and Perspex for the temperature range of 5000 to 30, 000 K[C]. Technical Memo No.3, CSIRO Division of Applied Physics, Sydney, Australia, 1982. [15] Gleizes A, Gonzalez J J, Freton P. Thermal plasma modeling[J]. Journal of Physics D: Applied Physics, 2005, 38(1): 153-183.