Computing Method of the Critical Value of Power System’s Self-Organized Critical Factors Based on Critical Slowing Down Theory
Cai Wantong1, 2, Liu Wenying1, Wang Fangyu1, Wang Weizhou3, Yao Wei4
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Electric Power Research Institute CSG Guangzhou 510663 China; 3. State Grid Gansu Electric Power Company Lanzhou 730030 China; 4. State Grid Taiyuan Power Supply Company Taiyuan 030001 China
Abstract:The phenomenon of critical slowing down near the critical point of critical phase transformation was common in many complex systems. Currently the algorithms to get the power system’s self-organized critical point was complicated or could not compute the critical value of related factors, which was concerned most in the application. Therefore critical slowing down theory was applied to seek the self-organized critical point in this article. And further Mann-Kendall test was used to compute the critical value of power system’s self-organized critical factors. This method is easy to implement and verified available and efficiency on CEPRI 36 bus system and Jiuquan area in Gansu power grid by simulating and K-S test,slide T-test. And this method can provide theoretical and technical basis for the prevention and control of large-scale blackouts.
蔡万通,刘文颖,王方雨,王维洲,药炜. 基于临界慢化理论的电力系统自组织临界影响因素阈值计算方法[J]. 电工技术学报, 2019, 34(5): 1068-1077.
Cai Wantong, Liu Wenying, Wang Fangyu, Wang Weizhou, Yao Wei. Computing Method of the Critical Value of Power System’s Self-Organized Critical Factors Based on Critical Slowing Down Theory. Transactions of China Electrotechnical Society, 2019, 34(5): 1068-1077.
[1] 于渌, 郝伯林. 相变和临界现象[M]. 北京: 科学出版社, 1984. [2] May R M, Levin S A, Sugihara G.Complex systems: ecology for bankers[J]. Nature, 2008, 451(7181): 893-895. [3] Lenton T M, Held H, Kriegler E, et al.Inaugural article: tipping elements in the Earth's climate system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 1786-1793. [4] 毕如玉, 林涛, 陈汝斯, 等. 交直流混合电力系统的安全校正策略[J]. 电工技术学报, 2016, 31(9): 50-57. Bi Ruyu, Lin Tao, Chen Rusi, et al.The security correction strategy in AC and DC hybrid power system[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 50-57. [5] 陈娟, 周涛, 刘亮, 等. 不同轴向富集度布置下的超临界水堆物理热工耦合稳态特性[J]. 中国电机工程学报, 2013, 33(29): 80-87. Chen Juan, Zhou Tao, Liu Liang, et al.Coupling characteristics of supercritical water-cooled reactor with different enrichment layouts[J]. Proceedings of the CSEE, 2013, 33(29): 80-87. [6] 周涛, 孙灿辉, 刘梦影, 等. 超临界水冷堆水棒导热性能研究[J]. 中国电机工程学报, 2012, 32(20): 56-61. Zhou Tao, Sun Canhui, Liu Mengying, et al.Study on heat conduction performance of water-rod in SCWR[J]. Proceedings of the CSEE, 2012, 32(20): 56-61. [7] 高丽娟, 杨又陵, 刘建明, 等. 新疆2次中强地震前的临界慢化现象研究[J]. 内陆地震, 2013, 27(4): 311-318. Gao Lijuan, Yang Youling, Liu Jianming, et al.Research on critical slowing down precursor before two moderate earthquakes in xinjiang[J]. Inland Earthquake, 2013, 27(4): 311-318. [8] 吴浩, 侯威, 颜鹏程. 试用临界慢化原理探讨气候突变[J]. 物理学报, 2013, 62(3): 548-558. Wu Hao, Hou Wei, Yan Pengcheng.Using the principle of critical slowing down to discuss the abrupt climate change[J]. Acta Physica Sinica, 2013, 62(3): 548-558. [9] Podolsky D, Turitsyn K.Critical slowing-down as indicator of approach to the loss of stability[C]// IEEE International Conference on Smart Grid Communications, Vancouver, BC, Canada, 2013: 19-24. [10] 范佳琪. 基于临界相变的电力系统连锁故障早期预警机理研究[D]. 北京: 华北电力大学, 2015. [11] 项胜, 何怡刚, 吴可汗. 基于分形理论的国内大停电分析[J]. 电工技术学报, 2013, 28(增刊2): 367-371. Xiang Sheng, He Yigang, Wu Kehan.Blackout analysis of domestic power based on fractal theory[J]. Transactions of China Electrotechnical Society, 2013, 28(S2): 367-371. [12] 熊一, 查晓明, 秦亮, 等. 风电功率爬坡气象场景分类模型及阈值整定研究[J]. 电工技术学报, 2016, 31(19): 155-162. Xiong Yi, Zha Xiaoming, Qin Liang, et al.Study on wind power ramping weather scenario classification model and threshold setting[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 155-162. [13] 顾雪平, 刘雨濛, 王涛, 等. 基于结构平衡理论的电网自组织临界态辨识[J]. 电工技术学报, 2018, 33(17): 4136-4145. Gu Xueping, Liu Yumemg, Wang Tao, et al.Self-organized critical state identification of power systems based on structural equilibrium theory[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4136-4145. [14] 封国林, 董文杰, 龚志强, 等. 观测数据非线性时空分布理论和方法[M]. 北京: 气象出版社, 2006. [15] Bak P.How nature works: the science of self-organized criticality[M]. New York: Copernicus Press, 1996. [16] 刘友波, 胡斌, 刘俊勇, 等. 电力系统连锁故障分析理论与应用(一)——相关理论方法与应用[J]. 电力系统保护与控制, 2013, 41(9): 148-155. Liu Youbo, Hu Bin, Liu Junyong, et al.Power system cascading failure analysis theories and application Ⅰ — related theories and applications[J]. Power System Protection and Control, 2013, 41(9): 148-155. [17] 邓蓉, 谭周文, 肖郭璇, 等. 基于压缩感知的电力线脉冲噪声抑制[J].电工技术学报, 2018, 33(23): 33-41. Deng Rong, Tan Zhouwen, Xiao Guoxuan, et al.Impulse noise suppression in power line communication based on compressed sensing[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 33-41. [18] 赵霞, 杨仑, 瞿小斌, 等. 电-气综合能源系统能流计算的改进方法[J]. 电工技术学报, 2018, 33(3): 467-477. Zhao Xia, Yang Lun, Qu Xiaobin, et al.An improved energy flow calculation method for integrated electricity and natural gas system[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 467-477. [19] Kéfi S, Rietkerk M, Alados C L, et al.Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems[J]. Nature, 2007, 449(7159): 213-217. [20] 吴浩. 基于临界慢化现象的气候突变前兆信号的研究[D]. 扬州: 扬州大学, 2014. [21] 王沙燚. 灾害系统与灾变动力学研究方法探索[D]. 杭州: 浙江大学, 2008. [22] 易俊, 周孝信, 肖逾男. 电力系统自组织临界特性分析与仿真模型[J]. 电网技术, 2008, 32(3): 7-12. Yi Jun, Zhou Xiaoxin, Xiao Yunan.Analysis on power system self-organized criticality and its simulation model[J]. Power System Technology, 2008, 32(3): 7-12. [23] 刘文颖, 蔡万通, 张宁, 等. 基于加权网络拓扑熵的电网自组织临界状态演化[J]. 中国电机工程学报, 2015, 35(22): 5740-5748. Liu Wenying, Cai Wantong, Zhang Ning, et al.Evolution of grid’s self-organizing critical state based on weighted network topology entropy[J]. Proceedings of the CSEE, 2015, 35(22): 5740-5748. [24] 徐慧明. 可识别潮流转移的广域后备保护及其控制策略研究[D]. 北京: 华北电力大学, 2007. [25] 徐建新, 陈学凯, 黄鑫. 湄潭县降水突变特征分析[J]. 华北水利水电大学学报(自然科学版), 2014, 35(2): 6-11. Xu Jianxin, Chen Xuekai, Huang Xin.Analysis of mutation characteristics of precipitation in meitan county[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2014, 35(2): 6-11. [26] 刘文颖, 但扬清, 朱艳伟, 等. 电网运行断面的自组织临界态辨识和量化分析[J]. 电网技术, 2014, 38(8): 2076-2081. Liu Wenying, Dan Yangqing, Zhu Yanwei, et al.Identification and quantitative analysis of self-organized critical state in running-grid section[J]. Power System Technology, 2014, 38(8): 2076-2081. [27] 曹一家, 王光增, 曹丽华, 等. 基于潮流熵的复杂电网自组织临界态判断模型[J]. 电力系统自动化, 2011, 35(7): 1-6. Cao Yijia, Wang Guangzeng, Cao Lihua, et al.An identification model for self-organized criticality of power grids based on power flow entropy[J]. Automation of Electric Power Systems, 2011, 35(7): 1-6. 通信作者:蔡万通, 男,1990年生,博士研究生,研究方向为新能源电力系统规划与运行控制.E-mail:caiwt2@csg.cn