Abstract:This paper proposes an advanced small-signal stability model for multi-terminal MMC-HVDC systems based on dynamic phasors and state-space. As ignoring the dynamic process of converter, the traditional models based on quasi-steady state assumption are difficult to reflect the rapid dynamic process of electronic devices. In accordance with active and passive network control strategies for multi-terminal MMC-HVDC, the small-signal stability models based on dynamic phasors are conducted, and related theoretical derivation is carried out. From the simulation analysis of a typical multi-terminal MMC-HVDC network with offshore wind generation and conventional power sources, the comparisons among the advanced small-signal model, electromagnetic-transient model and traditional small-signal state-space model are performed. It is shown that, the advanced small-signal state-space model can successfully follow the electromechanical transient response with small errors, predict the damped oscillations, and reduce the whole simulation time. Consequently, the validity and applicability of the proposed model are well confirmed.
[1] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 31(15): 1-14. Xiao Xiangning. Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 31(15): 1-14. [2] 徐殿国, 刘瑜超, 武健. 多端直流输电系统控制研究综述[J]. 电工技术学报, 2015, 31(17): 1-12. Xu Dianguo, Liu Yuchao, Wu Jian. Review on control strategies of multi-terminal direct current transmission system[J]. Transactions of China Electrotechnical Society, 2015, 31(17): 1-12. [3] Adam G P, Gowaid I A, Finney S J, et al. Review of DC-DC converters for multi-terminal HVDC trans- mission networks[J]. IET Power Electronics, 2016, 9(2): 281-296. [4] Lesnicar A, Marquardt R. An innovative modual multilevel converter topology suitable for a wide power range[C]//IEEE Power Tech Conference Proceedings, Bologna, Italy, 2003: 23-26. [5] Bahrman M P, Johnson B. The ABCs of HVDC transmission technologies[J]. IEEE Power Energy Magzine, 2007, 5(2): 32-44. [6] Ngoc-Tuan T, Marcus Z, Klaus W, et al. Generic model of MMC-VSC-HVDC for interaction study with AC power system[J]. IEEE Transaction on Power System, 2016, 31(1): 27-34. [7] Xu J Z, Gole A M, Zhao C Y, et al. The use of averaged-value model of modular multilevel con- verter in DC grid[J]. IEEE Transaction on Power Delivery, 2015, 30(2): 519-528. [8] Liu S, Xu Z, Hua W, et al. Electromechanical transient modelling of modular multilevel converter based multiterminal HVDC systems[J]. IEEE Transa- ction on Power System, 2014, 29(1): 72-83. [9] 彭浩, 邓焰, 王莹, 等. 模块化多电平变换器模型及稳态特性研究[J]. 电工技术学报, 2015, 31(12): 120-127. Peng Hao, Deng Yan, Wang Ying, et al. Research about the model and steady-state performance for modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2015, 31(12): 120-127. [10] 王姗姗, 周孝信, 汤广福, 等. 模块化多电平电压源换流器的数学模型[J]. 中国电机工程学报, 2011, 31(24): 1-8. Wang Shanshan, Zhou Xiaoxin, Tang Guangfu, et al. Modeling of modular multi-level voltage source converter[J]. Proceedings of the CSEE, 2011, 31(24): 1-8. [11] 刘栋, 汤广福, 郑健超, 等. 模块化多电平换流器小信号模型及开环响应时间常数分析[J]. 中国电机工程学报, 2012, 32(24): 1-7. Liu Dong, Tang Guangfu, Zheng Jianchao, et al. Small-signal modeling and analysis of open-loop response timeconstant of MMC[J]. Proceedings of the CSEE, 2012, 32(24): 1-7. [12] 李探, Aniruddha M G, 赵成勇. 考虑内部动态特性的模块化多电平换流器小信号模型[J]. 中国电机工程学报, 2016, 36(11): 2890-2899. Li Tan, Aniruddha M G, Zhao Chengyong. Small- signal model of the modular multilevel converter considering the internal dynamics[J]. Proceedings of the CSEE, 2016, 36(11): 2890-2899. [13] Zhou Luowei, Liu Sucheng, Lu Weiguo, et al. Quasi- steady-state large-signal modelling of DC-DC switching converter: justification and application for varying operating conditions[J]. IET Power Elec- tronics, 2014, 10(10): 2455-2464. [14] Chandrasekar S, Gokaraju R. Dynamic phasor modeling of type 3 DFIG wind generators (including SSCI phenomenon) for short-circuit calculations[J]. IEEE Transaction on Power Delivery, 2015, 30(2): 887-897. [15] Guo X, Lu Z, Wang B, et al. Dynamic phasors-based modeling and stability analysis of droop-controlled inverters for microgrid applications[J]. IEEE Transa- ction on Smart Grid, 2014, 6(5): 2980-2987. [16] Yang T, Bozhko S, Asher G. Fast functional modelling of diode-bridge rectifier using dynamic phasors[J]. IET Power Electronics, 2015, 8(6): 947-956. [17] Emadi A. Modeling of power electronics loads in AC distribution systems using the generalized state-space averaging method[J]. IEEE Transactions on Industrial Electronics, 2004, 51(3): 992-1000. [18] Daryabak M, Filizadeh S, Jatskevich J, et al. Modeling of LCC-HVDC systems using dynamic phasors[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1989-1998. [19] 胡伟, 孙建军, 查晓明, 等. 基于动态相量法的逆变型分布式电源微电网建模与仿真[J]. 电力系统自动化, 2014, 38(3): 14-18. Hu Wei, Sun Jianjun, Zha Xiaoming, et al. Modeling and simulation of microgrid including inverter- interfaced distribution resource based on dynamic phasors[J]. Automation of Electric Power system, 2014, 38(3): 14-18. [20] Saeedifard M, Iravani R. Dynamic performance of a modular multilevel back-to-back HVDC system[J]. IEEE Transaction on Power Delivery, 2010, 25(4): 2903-2912. [21] Zhang L, Harnefors L, Nee H P, et al. Inter- connection of two very weak AC systems by VSC- HVDC links using power-synchronization control[J]. IEEE Transaction on Power Systems, 2011, 26(1): 344-355. [22] Jenny Z, Hui D, Shengtao F, et al. Impact of short-circuit ratio and phase-locked loop parameters on the small-signal behavior of a VSC-HVDC con- verter[J]. IEEE Transaction on Power Delivery, 2014, 29(5): 2287-2296. [23] Wu F, Zhang X P, Godfrey K, et al. Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator[J]. IET Generation, Transmission & Distribution, 2007, 5(1): 751-760.