Abstract:Theaccurate calculation of grounding device parameters and current flow mechanismin complex soil structure is the foundation of reasonable optimization design of the hydropower station grounding device. A finite element calculation method of grounding device considering large scale complex soil structure is published in this paper. In this modeling,two dimensionalfinite element is coupling with three dimensional finite element to overcome the large computation induced by large contrast between extensive soil domain and grounding conductor. Vertical three layer soil model, massive soil model, and drop soil model were established respectively based on the presented method; current density, electric field strength in soil are analyzed in detail. The influence of soil resistivity of the riverside and the depth of river on ground resistanceofhydropowerstation grounding device is analyzedquantitatively.The results show that the water depth is the important factor influencing the current flow process of grounding device, design of hydropower stationgrounding device in complex soil structureshould considerthe actual water depth of massive soil modeland drop soil model.
李景丽, 张宇, 郭丽莹, 李渊博. 复杂土壤结构对水电站接地装置散流机理影响分析[J]. 电工技术学报, 2017, 32(23): 167-175.
Li Jingli, Zhang Yu, GuoLiying, Li Yuanbo. Analysis the Effect of Complex Soil Structure on the Dispersion Mechanism of the Grounding Device in the Hydropower Station. Transactions of China Electrotechnical Society, 2017, 32(23): 167-175.
[1] 何金良, 曾嵘. 电力系统接地技术[M]. 北京: 科学出版社, 2007. [2] SimaWenxia, Zhu Bin, Yuan Tao, et al. Finite-element model of the grounding electrode impulse characteristics in a complex soil structure based on geometric coordinate transformation[J]. IEEE Transaction on Power Delivery, 2016, 31(1): 96-102. [3] 刘连光, 马成廉. 基于有限元方法的直流输电接地极多层土壤地电位分布计算[J]. 电力系统保护与控制, 2015, 43(18): 1-5. Liu Lianguang, Ma Chenglian. Calculation of multi-layer soil earth surface potential distribution of HVDC due to finite element method[J]. Power System Protection and Control, 2015, 43(18): 1-5. [4] 郭卫, 黄文武, 文习山, 等. 应用快速多极子边界元法的块状土壤结构地网接地参数算法研究[J]. 中国电机工程学报, 2014,34(9): 1436-1445. Guo Wei, Huang Wenwu, Wen Xishan, et al. A study of grounding parameters of grounding grid in soil with massive texture by using fast multipole boundary method[J]. Proceedings of the CSEE, 2014, 34(9): 1436-1445. [5] 潘文霞, 刘铜锤, 王兵, 等. 分层土壤任意块状基础的接地计算方法[J]. 电工技术学报, 2016, 31(7): 145-151. Pan Wenxia, Liu Tongchui, Wang Bing, et al. Grounding computation method for layered-soil with arbitrary massive texture foundation[J]. Transactions of China Electrotechnica Society, 2016, 31(7): 145-151. [6] 李增. 复杂土壤地区接地网电气特性的研究[D]. 成都: 西南交通大学, 2007. [7] 柴艳莉. 基于三层土壤模型的水电站接地系统优化研究[D]. 重庆: 重庆大学, 2012. [8] 罗东辉, 司马文霞, 袁涛, 等. 考虑地表垂直落差的接地系统等效模型研究[C]//中国电机工程学会高电压专业委员会2015年学术年会, 西安, 2015. Luo Donghui, SimaWenxia, Yuan Tao, et al. Study on grounding system equivalent model with consideration of vertical drop of soil[C]//2015 Academic Conference of the High Voltage Specialized Committee of China Society of Electrical Engineering, Xi’an, China, 2015. [9] Geri A. Behavior of grounding systems excited by high impulse currents: the model and its validation[J]. IEEE Transactions on Power Delivery, 1999, 14(3): 1008-1017. [10] 范杰清, 郝建红, 柒培华. 基于扩展传输线法的异型腔电场屏蔽效能[J]. 电工技术学报, 2014, 29(5): 228-232, 238. Fan Jieqing, HaoJianhong, Qi Peihua. Electric field shielading effectiveness of heterotypic enclosures based on adjusted transmission line method[J]. Transactions of China Electrotechnica Society, 2014, 29(5): 228-232, 238. [11] 文刚, 齐世举, 姜勤波, 等. 大地水平分层电导率对架空线缆HEMP响应的影响[J]. 电工技术学报, 2016, 31(1): 91-95. Wen Gang, Qi Shiju, Jiang Qinbo, et al. Impact of horizontal stratified earth conductivity on overhead cable HEMP responses[J]. Transactions of China Electrotechnica Society, 2016, 31(1): 91-95. [12] 司马文霞, 李晓丽, 袁涛. 考虑土壤非线性特性的接地网冲击特性分析方法[J].中国电机工程学报, 2009, 29(16): 127-132. SimaWenxia, Li Xiaoli, Yuan Tao. Analysis of grounding grid impulse characteristics in frequency domain in consideration of soil non-linear characteristic[J]. Proceedings of the CSEE, 2009, 29(16): 127-132. [13] 张波, 崔翔, 赵志斌, 等. 计及导体互感的复杂接地网的频域分析方法[J]. 中国电机工程学报, 2003, 23(4): 77-80, 118. Zhang Bo, Cui Xiang, Zhao Zhibin, et al. Analysis of the complex grounding grids in frequency domain considering mutual inductances[J]. Proceedings of the CSEE, 2003, 23(4): 77-80, 118. [14] 张波, 崔翔, 赵志斌, 等. 大型变电站接地网的频域分析方法[J]. 中国电机工程学报, 2002, 22(9): 59-63. Zhang Bo, Cui Xiang, Zhao Zhibin, et al. Analysis of grounding grids at large scale substations in frequency domain[J]. Proceedings of the CSEE, 2002, 22(9): 59-63. [15] Grcev L D. Computer analysis of transient voltages in large grounding systems[J]. IEEE Transaction on Power Delivery, 1996, 11(2): 815-823. [16] Habjanic A, Trlep M. The simulation of the soil ionization phenomenon around the grounding system by the finite element method[J]. IEEE Transactions on Magnetic, 2006, 42(4): 867-870. [17] Song Z, Raghuveer MR, He J. Model for prediction of characteristics of lightning breakdown channels in soil in the presence of a buried cable[J]. IEE Proceedings-Generation Transmission and Distribution, 2003, 150(5): 623-628. [18] Li Jingli, YuanTao, YangQing, et al. Numerical and experimental investigation of grounding electrode impulse-current dispersal regularity considering the transient ionization phenomenon[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2647-2658. [19] 王燕, 杜志叶, 阮江军. 高压架空输电线路覆冰情况下风险评估研究[J]. 电力系统保护与控制, 2016, 44(10): 84-90. Wang Yan, Du Zhiye, RuanJiangjun. Reliability risk evaluation for the high voltage overhead transmission line under icing condition[J]. Power System Protection and Control, 2016, 44(10): 84-90. [20] 刘赟, 俞集辉, 程鹏. 基于电磁-热耦合场的架空输电线路载流量分析与计算[J]. 电力系统保护与控制, 2015, 43(9): 28-34. Liu Yun, Yu Jihui, Cheng Peng. Analysis and calculation on the ampacity of overhead transmission lines based onelectromagnetic-thermal coupling fields[J]. Power System Protection and Control, 2015, 43(9): 28-34. [21] 甘艳, 阮江军, 陈允平. 一维有限元与三维有限元耦合法在接地网特性分析中的应用[J]. 电网技术, 2004, 28(9): 62-66. Gan Yan, RuanJiangjun, Chen Yunping. Appliaction of unidimensional finite element method (FEM) coupled with three dimensional FEM in characteristics analysis of grounding mesh property[J]. Power System Technology, 2004, 28(9): 62-66. [22] 齐磊, 崔翔, 李慧奇. 变电站接地网的频域有限元方法[J]. 中国电机工程学报, 2007, 27(6): 62-66. Qi Lei, Cui Xiang, Li Huiqi. Finite element modeling ofthe substation grounding grids in frequecydomain[J].Proceedings of the CSEE, 2007, 27(6): 62-66. [23] 朱时阳, 袁涛, 朱彬. 分层土壤中接地装置冲击散流特性的有限元分析模型[J]. 电网技术, 2014, 38(8): 2304-2309. Zhu Shiyang, Yuan Tao, Zhu Bin. Finite element model of impulse dispersing characteristics of grounding equipment in layered soil[J]. Power System Technology, 2014, 38(8): 2304-2309. [24] Stochniol A. A general transformation for open boundary finite element method for electromagnetic problems[J]. IEEE Transaction on Magnetics, 1992, 28(2): 1679-1681. [25] 袁涛, 唐妍, 司马文霞, 等. 短导体对水平接地极冲击特性的影响[J]. 电工技术学报, 2015, 30(1): 178-185. Yuan Tao, Tang Yan, SimaWenxia, et al. Simulation analysis of the impact characteristic of grounding electrode based on the current shielding effect[J]. Transactions of China Electrotechnica Society, 2015, 30(1): 178-185.