Modal Analysis of the Flexible Rotor System for High-Power High-Speed Permanent Magnet Machine
Du Guanghui1, Huang Na2, Zhang Fengge3, Wang Tianyu4
1. School of Electronics and Information Engineering Xi’an Technological UniversityXi’an 710021 China . 2. CRRC Yongji Electric Co. Ltd Xi’an 710016 China. 3. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China. 4. School of Mechanical Engineering Shenyang Institute of Engineering Shenyang 110136 China
Abstract:For high speed machine, it is far more vulnerable when the rated speed close to critical speed. Under this circumstance, severe vibration will occur and even damage the rotor. For high-power high-speed machine, the rotor length is much greater than the diameter of the rotor. It needs to be designed as a flexible rotor system. The rated speed passes through the first-order critical speed, working in the security zone between the first-order critical speed and the second-order critical speed. But the scope of this security zone is very small, which brings great difficulties in designing high-power high-speed motor rotor system. In this paper, based on a 1.12MW, 18 000r/min high-speed permanent magnet (PM) machine, the dynamic characteristics of rotor system are analyzed theoretically, while the rotor modal and critical speed are also calculated. And then, the influencing factors on rotor critical speed are analyzed, including bearing stiffness, gyroscopic effect and the rotor main dimensions. Finally, a prototype is manufactured and a rotor vibration test is developed. The experimental results have validated the rotor critical speed analysis. It would provide the reference to rotor system design for high-power high-speed machine.
杜光辉, 黄娜, 张凤阁, 王天煜. 大功率高速永磁电机柔性转子系统模态分析[J]. 电工技术学报, 2017, 32(22): 101-107.
Du Guanghui, Huang Na, Zhang Fengge, Wang Tianyu. Modal Analysis of the Flexible Rotor System for High-Power High-Speed Permanent Magnet Machine. Transactions of China Electrotechnical Society, 2017, 32(22): 101-107.
[1] 张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7): 1-18. Zhang Fengge, Du Guanghui, Wang Tianyu, et al. Review on development and design of high speed machines[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 1-18. [2] Gerada D, Mebarki A, Brown N L, et al. High-speed electrical machines: technologies, trends, and develop- ments[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2946-2959. [3] Kolondzovski Z, Arkkio A, Larjola J, et al. Power limits of high-speed permanent-magnet electrical machines for compressor applications[J]. IEEE Transac- tions on Energy Conversion, 2011, 26(1): 73-82. [4] Zhang Fengge, Du Guanghui, Wang Tianyu, et al. Electromagnetic design and loss calculations of a 1.12MW high-speed permanent-magnet motor for compressor applications[J]. IEEE Transactions on Energy Conversion, 2016, 31(1): 132-140. [5] Borisavljevic A, Polinder H, Ferreira J A. On the speed limits of permanent-magnet machines[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 220-227. [6] 张凤阁, 杜光辉, 王天煜, 等. 1.12MW高速永磁电机不同冷却方案的温度场分析[J]. 电工技术学报, 2014, 29(增刊): 66-72. Zhang Fengge, Du Guanghui, Wang Tianyu, et al. Losses Temperature field analysis of 1.12MW high speed permanent magnet machine with different cooling schemes[J]. Transactions of China Electro- technical Society, 2014, 29(S): 66-72. [7] 张凤阁, 杜光辉, 王天煜, 等. 1.12MW高速永磁电机多物理场综合设计[J]. 电工技术学报, 2015, 30(12): 171-180. Zhang Fengge, Du Guanghui, Wang Tianyu, et al. Integrated design of 1.12MW high speed PM machine based on multi-physics fields[J]. Transactions of china Electrotechnical Society, 2015, 30(12): 171- 180. [8] Zhang Fengge, Du Guanghui, Wang Tianyu, et al. Rotor retaining sleeve design of a 1.12MW high- speed PM machine[J]. IEEE Transactions on Industry Applications, 2015, 51(5): 3675-2685. [9] Ede J D, Zhu Z Q, Howe D. Rotor resonances of high-speed permanent magnet brushless machines[J]. IEEE Transactions on Industry Applications, 2000, 38(6): 1542-1548. [10] Lee Y B, Park D J, Kim C H. Rotordynamic characteristics of a micro turbo generator supported by air foil bearings[J]. Journal of Micromechanics and Microengineering, 2007, 17(2): 297-303. [11] Kolondzovski Z, Sallinen P, Belahcen A, et al. Rotordynamic analysis of different rotor structures for high-speed permanent-magnet electrical machines[J]. IET Electric Power Applications, 2010, 4(7): 516- 524. [12] Hong D K, Woo B C, Koo D H. Rotordynamics of 120000r/min 15kW ultra high speed motor[J]. IEEE Transactions on Magnetics, 2009, 45(6): 2831-2834. [13] Hong D K, Woo B C, Jeong Y H, et al. Development of an ultra high speed permanent magnet synchronous motor[J]. International Journal of Precision Engin- eering and Manufacturing, 2013, 14(3): 493-499. [14] Hong D K, Choi J H, Han P W, et al. Analysis of high speed induction motor for spindle made by copper die casting process[J]. Internationl Journal of precision engineering and manufacturing, 2012, 13(12): 2251- 2257. [15] Cho H W, Ko K J, Choi J Y, et al. Rotor natural frequency in high-speed permanent-magnet synchronous motor for turbo-compressor application[J]. IEEE Transactions on Magnetic, 2011, 47(10): 4258-4261. [16] 王天煜. 高速永磁电机转子综合设计方法及动力学特性研究[D]. 沈阳: 沈阳工业大学, 2010. [17] 田拥胜, 孙岩桦, 虞烈. 高速永磁电机电磁轴承转子系统的动力学及实验研究[J]. 中国电机工程学报, 2012, 32(9): 116-123. Tian Yongsheng, Sun Yanhua, Yu Lie. Dynamical and experimental researches of active magnetic bearing rotor systems for high-speed PM machines[J]. Proceedings of the CSEE, 2012, 32(9): 116-123. [18] 黄梓嫄, 韩邦成, 周银锋. 非线性接触下磁悬浮电机柔性转子系统模态分析[J]. 中国电机工程学报, 2014, 34(15): 2438-2444. Huang Ziyuan, Han Bangcheng, Zhou Yinfeng. Modal analysis of the flexible rotor system of magnetic levitation motors under nonlinear contact[J]. Proceedings of the CSEE, 2014, 34(15): 2438-2444.