电工技术学报  2017, Vol. 32 Issue (12): 214-223    DOI:
电力系统 |
混合能源协同控制的智能家庭能源优化控制策略
徐建军, 王保娥, 闫丽梅, 李战平
东北石油大学电气信息工程学院 大庆 163318
The Strategy of the Smart Home Energy Optimization Control of the Hybrid Energy Coordinated Control
Xu Jianjun, Wang Bao’e, Yan Limei, Li Zhanping
College of Electrical Information Engineering Northeast Petroleum University Daqing 163318 China
全文: PDF (16177 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 家庭能源优化控制是家庭能源管理系统(HEMS)的重要分支之一,然而由于缺少有效的智能优化算法,制约了家庭能源优化控制的实际应用。本文通过对家用电器运行特性的分析,将家庭用电设备分为刚性负荷,简单可调节负荷,电池类设备,供暖、通风和空调(HVAC)系统设备等,并建立相应的负荷模型;以市电电网、光伏发电、储能电池三种能源作为智能家庭的供给源,以电能花费和用户舒适度作为优化目标,建立混合能源协同控制的智能家庭能源优化控制模型;并提出一种基于改进的快速粒子群算法(APSOA)的智能求解方法,得出每个电器最优的用电时段,室温控制系统各个时段所需功率以及蓄电池各个时段的充放电功率。以某智能家庭夏季某一天用电情况为例,在Matlab环境下,建立模型并仿真,与粒子群算法(PSOA)、遗传算法(GA)进行对比,说明了模型和算法的可行性及有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 家庭能源管理系统 智能家庭 能源优化控制 混合能源 家用电器 改进粒子群算法    
Abstract:Home energy optimization control is one of the important branches of home energy management system (HEMS), but the lack of effective intelligent optimization algorithm has restricted its practical application. In this paper, through analyzing the working characteristics of household appliances, household electric equipment was divided into rigid load, simple adjustable load, battery equipment, HVAC (heating, ventilation, and air conditioning) system equipment, etc. The corresponding load model was then established, taken power grid, photovoltaic power generation and energy storage battery as the energy sources of smart home. With electricity cost and comfort level as the optimization indexes, home energy optimization control model was also establish for the coordinated control of the hybrid energy. In addition, a intelligent solving method was put forward based on improved adaptive particle swarm optimization algorithm (APSOA). Thereafter, the optimal time of each electric appliance, the required power of each time in room temperature control system and the charge and discharge power in each period of the storage battery were obtained. According to electricity situation of one day in summer, this paper built the model and simulated it in Matlab. Compared with the results by particle swarm optimization algorithm (PSOA) and genetic algorithm (GA), the model and algorithm have been verified.
Key wordsHome energy management system    smart home    the energy optimization control    hybrid energy    household appliances    adaptive particle swarm optimization algorithm   
收稿日期: 2016-01-06      出版日期: 2017-06-30
PACS: TK018  
基金资助:黑龙江省普通高等学校新世纪优秀人才培养计划资助项目(1252-NCET-006)
通讯作者: 闫丽梅 女,1971年生,教授,硕士生导师,研究方向为电力系统安全稳定分析与控制。E-mail: 565735794@qq.com   
作者简介: 徐建军 男,1971年生,教授,硕士生导师,研究方向为智能电网和电力系统。E-mail: 123939274@qq.com
引用本文:   
徐建军, 王保娥, 闫丽梅, 李战平. 混合能源协同控制的智能家庭能源优化控制策略[J]. 电工技术学报, 2017, 32(12): 214-223. Xu Jianjun, Wang Bao’e, Yan Limei, Li Zhanping. The Strategy of the Smart Home Energy Optimization Control of the Hybrid Energy Coordinated Control. Transactions of China Electrotechnical Society, 2017, 32(12): 214-223.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/Y2017/V32/I12/214