Nonlinear Model of Force-to-Current Inverse Transform for the Planar Switched Reluctance Motor
Huang Sudan1, Cao Guangzhong1, Qian Qingquan2, Duan Ji’an3
1. Shenzhen Key Laboratory of Electromagnetic Control Shenzhen University Shenzhen 518060 China; 2. Department of Electrical Engineering Southwest Jiaotong University Chengdu 610031 China; 3. State Key Laboratory of High Performance Complex Manufactory Central South UniversityChangsha 410083 China
Abstract:This paper proposed a nonlinear model of force-to-current inverse transform for the planar switched reluctance motor (PSRM) to improve motion accuracy. This model was expressed as a sparse least squares support vector machines (LS-SVM). The training set was firstly acquired from experimental measurement. The parameters of the sparse LS-SVM were further determined through the cross-validation method. Then the accuracy of the sparse LS-SVM was assessed via the testing set from experimental measurement. Additionally, the PSRM system with PD controllers was built by this model. Finally, the experiments of system motion control were carried out. The results demonstrated that with the proposed model, the precision of estimated current is high and the modeling error is small. The PSRM system based on the model can achieve trajectory tracking steadily, smoothly, and accurately.
[1] 潘剑飞, 曹广忠, 张宙. 平面电机设计与控制[M].北京: 科学出版社, 2011. [2] 寇宝泉, 张赫. 多自由度短行程超精密平面电机技术发展综述[J]. 电工技术学报, 2013, 28(7): 1-11. Kou Baoquan, Zhang He. Development of multi-DOF micro-motion ultra-precision planar motors[J]. Transactions of China Electrotechnical Society, 2013, 28(7): 1-11. [3] 宋玉晶, 张鸣, 朱煜, 等. 基于伪周期的Halbach永磁阵列三维磁场端部效应建模研究[J].电工技术学报, 2015, 30(12): 162-170. Song Yujing, Zhang Ming, Zhu Yu, et al. Three dimensional magnetic field end-effect modeling for Halbach permanent magnet array based on pseudo periodic[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 162-170. [4] 李鑫, 朱煜, 杨开明, 等. 基于电流分配系数自适应修正的平面电机解耦控制[J]. 电工技术学报, 2014, 29(11): 53-60. Li Xin, Zhu Yu, Yang Kaiming, et al. Decoupled control for planar motor based on self-adaptive correction for current distribution coefficient[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 53-60. [5] Cao Jiayong, Zhu Yu, Wang Jinsong, et al. A novel synchronous permanent magnet planar motor and its model for control applications[J]. IEEE Transactions on Magnetics, 2005, 41(6): 2156-2163. [6] 曹家勇, 朱煜, 汪劲松, 等. 平面电动机设计、控制与应用技术综述[J]. 电工技术学报, 2005, 20(4): 1-8. Cao Jiayong, Zhu Yu, Wang Jinsong, et al. Survey of the state of the art in planar motor technology[J]. Transactions of China Electrotechnical Society, 2005, 20(4): 1-8. [7] 寇宝泉, 张赫, 李立毅. 集成绕组结构短行程直流平面电机[J]. 中国电机工程学报, 2011, 31(15): 88-93. Kou Baoquan, Zhang He, Li Liyi. Integrated winding structure short-stroke DC planar motor[J]. Pro- ceedings of the CSEE, 2011, 31(15): 88-93. [8] Cao Guangzhong, Fang Jilin, Huang Sudan, et al. Optimization design of the planar switched reluctance motor on electromagnetic force ripple minimi- zation[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [9] Pan J F, Cheung N C, Gan W C, et al. A novel planar switched reluctance motor for industrial appli- cations[J]. IEEE Transactions on Magnetics, 2006, 42(10): 2836-2839. [10] Pan Jianfei, Cheung N C, Yang Jinming. High- precision position control of a novel planar switched reluctance motor[J]. IEEE Transactions on Industrial Electronics, 2005, 52(6): 1644-1652. [11] Huang Sudan, Cao Guangzhong, Qian Qingquan. Phase current estimation of planar switched relu- ctance motors using least squares support vector machines[C]//IEEE Conference on Industrial Elec- tronics and Applications, Hangzhou, 2014: 483-487. [12] Pan J F, Zou Yu, Cao Guangzhong. Adaptive controller for the double-sided linear switched reluctance motor based on the nonlinear inductance modelling[J]. IET Electric Power Applications, 2013, 7(1): 1-15. [13] Pan J F, Cheung N C, Zou Yu. An improved force distribution function for linear switched reluctance motor on force ripple minimization with nonlinear inductance modeling[J]. IEEE Transactions on Magnetics, 2012, 8(11): 3064-3067. [14] Zhao Shiwei, Cheung N C, Gan W C, et al. High-precision position control of a linear-switched reluctance motor using a self-tuning regulator[J]. IEEE Transactions on Power Electronics, 2010, 25(11): 2820-2827. [15] Han-Kyung B, Byeong-Seok L, Vijayraghavan P, et al. A linear switched reluctance motor: converter and control[J]. IEEE Transactions on Industry Appli- cations, 2000, 36(5): 1351-1359. [16] Gan W C, Cheung N C, Li Qiu. Position control of linear switched reluctance motors for high-precision applications[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1350-1362. [17] 司利云, 林辉, 刘震. 基于最小二乘支持向量机的开关磁阻电动机建模[J]. 中国电机工程学报, 2007, 27(6): 26-30. Si Liyun, Lin Hui, Liu Zhen. Modeling of switched reluctance motors based on LS-SVM[J]. Proceedings of the CSEE, 2007, 27(6): 26-30. [18] 纪良文, 蒋静坪, 何峰. 基于径向基函数神经网络的开关磁阻电机建模[J]. 电工技术学报, 2001, 16(4): 7-11. Ji Liangwen, Jiang Jingping, He Feng. Modeling of switched reluctance motors based on radial basis function neural networks[J]. Transactions of China Electrotechnical Society, 2001, 16(4): 7-11. [19] 李大芃, 王守臣, 诸静. 开关磁阻电机的模糊神经网络模型[J]. 中国电机工程学报, 2000, 20(1): 11-14. Li Dapeng, Wang Shouchen, Zhu Jing. The fuzzy neural networks model of switched reluctance driver [J]. Proceedings of the CSEE, 2000, 20(1): 11-14. [20] 王瑜, 苑津莎, 尚海昆, 等. 组合核支持向量机在放电模式识别中的优化策略[J]. 电工技术学报, 2015, 30(2): 229-236. Wang Yu, Yuan Jinsha, Shang Haikun, et al. Optimization strategy research on combined-kernel support vector machine for partial discharge pattern recognition[J]. Transactions of China Electro- technical Society, 2015, 30(2): 229-236. [21] 薛浩然, 张珂珩, 李斌, 等. 基于布谷鸟算法和支持向量机的变压器故障诊断[J]. 电力系统保护与控制, 2015, 43(8): 8-13. Xue Haoran, Zhang Keheng, Li Bin, et al. Fault diagnosis of transformer based on the cuckoo search and support vector machine[J]. Power System Pro- tection and Control, 2015, 43(8): 8-13. [22] 王贺, 胡志坚, 张翌晖, 等. 基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测[J].电工技术学报, 2014, 29(4): 237-245. Wang He, Hu Zhijian, Zhang Yihui, et al. A hybrid model for short-term wind speed forecasting based on ensemble empirical mode decomposition and least squares support vector machines[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 237-245. [23] 王恺, 关少卿, 汪令祥, 等. 基于模糊信息粒化和最小二乘支持向量机的风电功率联合预测建模[J]. 电力系统保护与控制, 2015, 43(2): 26-32. Wang Kai, Guan Shaoqing, Wang Lingxiang, et al. A combined forecasting model for wind power predication based on fuzzy information granulation and least squares support vector machine[J]. Power System Protection and Control, 2015, 43(2): 26-32. [24] 王新, 孟玲玲. 基于EEMD-LSSVM的超短期负荷预测[J]. 电力系统保护与控制, 2015, 43(1): 61-66. Wang Xin, Meng Lingling. Ultra-short-term load forecasting based on EEMD-LSSVM[J]. Power System Protection and Control, 2015, 43(1): 61-66. [25] Fang Jilin, Huang Sudan, Cao Guangzhong, et al. Optimization design of planar switched reluctance motors based on electromagnetic force characteri- stics[C]//IEEE International Power Electronics Systems and Applications Conference, Hongkong, 2013: 1-6. [26] 顾燕萍, 赵文杰, 吴占松. 最小二乘支持向量机的算法研究[J]. 清华大学学报(自然科学版), 2010, 50(7): 1063-1066. Gu Yanping, Zhao Wenjie, Wu Zhansong. Least squares support vector machines algorithm[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(7): 1063-1066. [27] 胡良谋, 曹克强, 徐浩军, 等. 支持向量机故障诊断及控制技术[M]. 北京: 国防工业出版社, 2011. [28] Suykens J A K, Lukas L, Vandewalle J. Sparse approximation using least squares support vector machines[C]//Proceedings of IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 2000, 2: 757-760. [29] 潘剑飞, 曹广忠, 王鑫. 开关磁阻电机平面运动控制系统的分析与控制[J]. 电机与控制学报, 2009, 13(1): 22-27. Pan Jianfei, Cao Guangzhong, Wang Xin. Analysis and control of a novel planar motion control system[J]. Electric Machines and Control, 2009, 13(1): 22-27.