Abstract:Focusing on the issue of harmonic distortion in the low-voltage distribution network with multiple feeders,this paper buildsa distributed active filtering system with multifunctional photovoltaic inverters working as the basic units.By modeling and analyzing the harmonic resources,the positive effect of harmonic voltage on the point of common coupling (PCC)can be utilized rationally.Under the consideration of capacity limitation of the multifunctional inverts,a multiple objectivefor harmonic suppression is developed,which canachieveanoptimized allocation of harmonic compensation for each distribution feeder.Subsequently,the characteristics of different harmonic compensation strategies are compared by Matlab/Simulink and the simulation results verify the effectiveness of the proposed strategy.Compared with existing harmonic filtering system,the proposed distributed active filtering system optimizes the effect of harmonic suppression on PCC and reduces the capacity for harmonic compensation at the same time.
朱国锋, 牟龙华. 多馈线型低压配电网分布式谐波治理的优化控制[J]. 电工技术学报, 2016, 31(9): 25-33.
Zhu Guofeng, Mu Longhua. Optimal Control of Distributed Harmonic Compensation in Low-Voltage Distribution Network with Multiple Feeders. Transactions of China Electrotechnical Society, 2016, 31(9): 25-33.
[1] Guerrero J M,Loh P C,Lee T L,et al.Advanced control architectures for intelligent microgrids—part Ⅱ:power quality,energy storage,and AC/DC microgrids[J].IEEE Transactions on Industrial Electronics,2013,60(4):1263-1270. [2] Wada K,Fujita H,Akagi H.Considerations of a shunt active filter based on voltage detection for installation on a long distribution feeder[J].IEEE Transactions on Industry Applications,2002,38(4):1123-1130. [3] Sun X,Zeng J,Chen Z.Site selection strategy of single-frequency tuned R-APF for background harmonic voltage damping in power systems[J].IEEE Transactions on Power Electronics,2013,28(1):135-143. [4] Guerrero J M,Chandorkar M,Lee T,et al.Advanced control architectures for intelligent microgrids—part I:decentralized and hierarchical control[J].IEEE Transactions on Industrial Electronics,2013,60(4):1254-1262. [5] Lee T L,Cheng P T,Akagi H,et al.A dynamic tuning method for distributed active filter systems[J].IEEE Transactions on Industry Applications,2008,44(2):612-623. [6] Ma Ruofei,Chen H H,Huang Y R,et al.Smart grid communication:its challenges and opportunities[J].IEEE Transactions on Smart Grid,2013,4(1):36-46. [7] 李国庆,王鹤,张慧杰.微电网中基于逆变电源控制的重要节点电能质量管理方法[J].电工技术学报,2014,29(2):177-184. Li Guoqing,Wang He,Zhang Huijie.Power quality management method based on inverter source control for important node in microgrid[J].Transactions of China Electrotechnical Society,2014,29(2):177-184. [8] 黄冬冬,吴在军,窦晓波,等.光伏规模化并网的电能质量复合控制策略研究[J].电力系统保护与控制,2015,43(3):107-112. Huang Dongdong,Wu Zaijun,Dou Xiaobo,et al.A power quality composite control strategy based on large-scale grid-connected photovoltaic power generation[J].Power System Protection and Control,2015,43(3):107-112. [9] 耿乙文,伍小杰,周德佳,等.基于改进型比例谐振控制器的三相四线制光伏发电和有源滤波器系统[J].电工技术学报,2013,28(8):142-148. Geng Yiwen,Wu Xiaojie,Zhou Dejia,et al.Research on three phase four wire PV-AF system based on improved proportional resonant controllers[J].Transactions of China Electrotechnical Society,2013,28(8):142-148. [10]吴春华,黄建明,陈卫民,等.单相光伏并网与有源滤波的统一控制[J].电工技术学报,2011,26(10):103-109. Wu Chunhua,Huang Jianming,Chen Weimin,et al.Unified control of single phase photovoltaic grid-connected and active power filter[J].Transactions of China Electrotechnical Society,2011,26(10):103-109. [11]杜春水,张承慧,刘鑫正,等.带有源电力滤波功能的三相光伏并网发电系统控制策略[J].电工技术学报,2010,25(9):163-169. Du Chunshui,Zhang Chenghui,Liu Xinzheng,et al.Control strategy on the three-phase grid-connected photovoltaic generation system with shunt active power filter[J].Transactions of China Electrotechnical Society,2010,25(9):163-169. [12]Munir S,Li Yunwei.Residential distribution system harmonic compensation using PV interfacing inverter[J].IEEE Transactions on Smart Grid,2013,4(2):816-827. [13]Mazin H E,Xu W,Huang B.Determining the harmonic impacts of multiple harmonic-producing loads[J].IEEE Transactions on Power Delivery,2011,26(2):1187-1195. [14]孙媛媛,李佳奇,尹志明.基于实测数据的集中式多谐波源责任评估[J].中国电机工程学报,2014,34(13):2164-2171. Sun Yuanyuan,Li Jiaqi,Yin Zhiming.Quantifying harmonic impacts for concentrated multiple harmonic sources using actual data[J].Proceedings of the CSEE,2014,34(13):2164-2171. [15]赵振涛,张大海,李永生,等.基于广义最小二乘回归的间谐波源识别方法[J].电力系统保护与控制,2013,41(15):36-40. Zhao Zhentao,Zhang Dahai,Li Yongsheng,et al.Identification of inter-harmonic sources based on generalized least squares regression[J].Power System Protection and Control,2013,41(15):36-40. [16]Thunberg E,Soder L.A norton approach to distribution network modeling for harmonic studies[J].IEEE Transactions on Power Delivery,1999,14(1):272-277. [17]Jing Yong,Liang Chen,Chen Shuangyan.Modeling of home appliances for power distribution system harmonic analysis[J].IEEE Transactions on Power Delivery,2010,25(4):3147-3155. [18]International Electrotechnical Commission.Testing and measurement techniques:general guide on harmonics and interharmonics measurements and instrumentation,for power supply systems and equipment connected thereto:IEC 61000-4-7[S].Geneva:IEC,2002. [19]全国电压电流等级和频率标准技术委员会.GB/T 14549-93 电能质量 公用电网谐波[S].北京:中国标准出版社,1999. [20]Chang G K,Xu Wei,Ribeiro P,et al.Modeling devices with nonlinear voltage-current characteristics for harmonic studies[J].IEEE Transactions on Power Delivery,2004,19(4):1802-1811. [21]李鑫滨,朱庆军.一种改进粒子群优化算法在多目标无功优化中的应用[J].电工技术学报,2010,25(7):137-143. Li Xinbin,Zhu Qingjun.Application of improved particle swarm optimization algorithm to multi-objective reactive power optimization[J].Transactions of China Electrotechnical Society,2010,25(7):137-143. [22]Wu T F,Nien H S,Hsieh H M,et al.PV power injection and active power filtering with amplitude-clamping and amplitude-scaling algorithms[J].IEEE Transactions on Industry Applications,2007,43(3):731-741.