Abstract:In this paper, an AC&DC hybrid power supply system based on dual stator winding induction generator (DSWIG) is proposed. AC and DC power with variable frequency can be generated at the same time by this system. The instantaneous slip frequency based control is adopted here. Experiment on an 18kW DSWIG has been implemented to validate the proposed power supply system. The result shows that this system could operate with wide speed range of 1:3 in the constant power zone with excellent dynamic and steady state performances. Typical features include that the recovery time is less than 10ms when 100% rated AC load is suddenly applied and removed, which is less than the American Military Standard of 70ms. The preliminary achievements indicate that this AC&DC hybrid power supply system is a competitive solution for the airborne, automotive and other independent power supply applications.
史经奎, 卜飞飞, 黄文新, 胡育文, 李朋. 基于定子双绕组异步发电机的交直流混合发电系统[J]. 电工技术学报, 2016, 31(2): 38-46.
Shi Jingkui, Bu Feifei, Huang Wenxin, Hu Yuwen, Li Peng. AC&DC Hybrid Power Supply System Based on Dual Stator-Winding Induction Generator. Transactions of China Electrotechnical Society, 2016, 31(2): 38-46.
[1] Emadi E, Ehsani M. Aircraft power system: techno- logy, state of the art and future trends[J]. IEEE Aero- space and Electronics System Magazine, 2000(1): 28-32. [2] Rosero J A, Ortega J A, Aldabas E, et al. Moving towards a more electric aircraft[J]. IEEE Aerospace Electronic Systems Magazine, 2007, 22(3): 3-9. [3] Taha M H, Skinner D, Gami S, et al. Variable frequency to constant frequency converter (VFCFC) for aircraft applications[J]. International Conference on Power Electronics, Machines and Drives, 2002: 235-240. [4] AbdElhafez A A, Forsyth A J. A review of more- electric aircraft[C]//13th International Conference on Aerospace Sciences & Aviation Technology, 2009, 5: 26-28. [5] 严东超. 飞机供电系统[M]. 北京: 国防工业出版社, 2010. [6] Izquierdo D, Azcona R, Lopez del Cerro F J, et al. Electrical power distribution system (HV270DC) for application in more electric aircraft[C]//Applied Power Electronics Conference and Exposition (APEC), 2010: 1300-1305. [7] Maldonado M A. Shah N M, Cheek K J, et al. Power management and distribution system for a more- electric aircraft (MADMEL)-program status[C]// Intersociety Energy Conversion Engineering Con- ference, 1997: 274-279. [8] Olaiya M, Buchan N. High power variable frequency generator for large civil aircraft[J]. IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft, 1999: 3/1- 3/4. [9] Rosado S, Ma Xiangfei, Francis G, et al. Model-based digital generator control unit for a variable frequency synchronous generator with brushless exciter[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 42-52. [10] Chang Jie, Wang Anhua. New VF power system archi- tecture and evaluation for future aircraft[J]. IEEE Transactions on Aerospace And Electronic Systems, 2006, 42(2): 527-539. [11] Niggemann R E, Peecher S, Rozman G. 270-VDC/ hybrid 115V AC electric power generating system tech- nology demonstrator[J]. IEEE Aerospace and Electronic Systems Magazine, 1991, (8): 21-26. [12] 马伟明. 电力集成技术[J]. 电工技术学报, 2005, 20(1): 16-20. Ma Weiming. Power system integration technique[J]. Transactions of China Electrotechnical Society, 2005, 20(1): 16-20. [13] 马伟明. 交直流电力集成技术[J]. 中国工程科学, 2002, 4(12): 53-59. Ma Weiming. AC-DC power integration technique[J]. Engineering Science, 2002, 4(12): 53-59. [14] Kumsuwan Y, Srirattanawichaikul W, Premrudee- preechacharn S. A simple voltage and frequency control of VSI-inverter-fed self-excited induction generator drive[C]//ICROS-SICE International Joint Conference, 2009: 430-434. [15] Bansal R C. Three-phase self-excited induction gene- rators: an overview[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 292-299. [16] 胡育文, 黄文新, 张兰红. 异步电机起动/发电系统的研究[J]. 电工技术学报, 2006, 21(5): 7-13. Hu Yuwen, Huang Wenxin, Zhang Lanhong. Research on employing starter/generator system[J]. Transactions of China Electrotechnical Society, 2006, 21(5): 7-13. [17] Elbuluk M E, Kankan M D. Potential starter/ generator technologies for future aerospace applications [J]. IEEE AES Systems, 1997, 21(5): 24-31. [18] Alan I, Lipo T A. Starter/generator employing resonant converter-fed induction machine part I: analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4): 1309-1318. [19] Alan I, Lipo T A. Starter/generator employing resonant converter fed induction machine part II: Hardware prototype[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4): 1319-1329. [20] Aircraft Electric Power Characteristics[S]. Military Standard, MILSTD-704F, 2004. [21] 刘陵顺, 胡育文, 黄文新. 电力电子变换器控制的异步电机发电技术[J]. 电工技术学报, 2005, 20(5): 1-7. Liu Lingshun, Hu Yuwen, Huang Wenxin. Summary of technology of induction generators with power electronic converters[J]. Transactions of China Elec- trotechnical Society, 2005, 20(5): 1-7. [22] Leidhoid R, Garcia G, Valla M I. Induction generator controller based on the instan- taneous reactive power theory[J]. IEEE Transactions on Energy Conversion, 2002, 17(3): 368-372. [23] Ahmed T, Nishida K, Nakaoka M. Advanced control of PWM converter with variable- speed induction generator[J]. IEEE Transactions on Industry App- lications, 2006, 42(4): 934-945. [24] Ahmed T, Nishida K, Nakaoka M. A novel stand-alone induction generator system for AC and DC power applications[J]. IEEE Transactions on Industry ApplicaTions, 2007, 43(6): 1465-1474. [25] 陈伯时. 电力拖动控制系统—运动控制系统[M]. 北京: 机械工业出版社, 2003. [26] Garcia A Munoz, Lipo T A, Novotny D W. A new induction motor V/f control method capable of high- performance regulation at low speeds[J]. IEEE Transac- tions on Industry Applications, 1998, 34(4): 813-821. [27] Miles A R, Novotny D W. Transfer functions of the slip-controlled induction machine[J]. IEEE Trans- actions on Industry Applications, 1979, IA-15(1): 54-62. [28] 刘迪吉. 航空电机学[M]. 北京: 航空工业出版社, 1992.