电工技术学报  2015, Vol. 30 Issue (20): 145-150    DOI:
电力系统运行与稳定 |
电力系统的多重(维)鞍结分岔点及其特征分析
衣涛,王承民,谢宁,张焰
上海交通大学电气工程系 上海 200240
Power System Multiple Saddle-Node Bifurcation Point and Its Characteristic Analysis
Yi Tao, Wang Chengmin, Xie Ning, Zhang Yan
Shanghai Jiaotong University Shanghai 200240 China
全文: PDF (210 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 电力系统平衡解曲线的显式表达对鞍结分岔点性态的研究至关重要。本文通过引入支路电流变量,将节点电压方程表示成一元二次的形式,得到以支路电流为参数的电力系统平衡解曲线显式表达式,进一步对鞍结分岔进行节点特征描述,通过定义鞍结分岔点的重数(维数)和雅可比矩阵的特征值分析,说明鞍结分岔点的重(维)数与雅可比矩阵特征值为零的对数是相同的,多重(维)鞍结分岔点代表系统更临近的稳定边界,并提出多重(维)鞍结分岔点的降维求解算法。仿真计算表明,本文所提出的方法是正确的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
衣涛
王承民
谢宁
张焰
关键词 平衡解曲线支路电流鞍结分岔点重(维)数雅可比矩阵特征值    
Abstract:The explicit expression of equilibrium solution curve is very important to the study of saddle-node bifurcation point. In this paper, the node voltage equations express as quadratic form through introducing branch current variables, and obtain the explicit expression of power system solutions curve which parameter is branch current. Then, describe the characteristics of saddle-node bifurcation. The dimension of saddle-node bifurcation point is same with the number of jacobian matrix zero eigenvalue by defining the dimension and jacobian matrix eigenvalue analysis. The multiple saddle-node bifurcation point is more close to the stability boundary of power system. We put forward the dimensionality reduction algorithm of multiple saddle-node bifurcation point. The simulation results show that the presented method is correct.
Key wordsEquilibrium solution curve    branch current    saddle-node bifurcation point    dimension    jacobian matrix eigenvalue   
收稿日期: 2011-04-22      出版日期: 2015-10-30
PACS: TM711  
基金资助:国家自然科学基金青年科学基金资助项目(51307108)
作者简介: 衣 涛 男,1973年生,博士研究生,讲师,研究方向为电力系统稳定。王承民 男,1969年生,教授,博士生导师,研究方向为电力系统经济运行。
引用本文:   
衣涛,王承民,谢宁,张焰. 电力系统的多重(维)鞍结分岔点及其特征分析[J]. 电工技术学报, 2015, 30(20): 145-150. Yi Tao, Wang Chengmin, Xie Ning, Zhang Yan. Power System Multiple Saddle-Node Bifurcation Point and Its Characteristic Analysis. Transactions of China Electrotechnical Society, 2015, 30(20): 145-150.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/Y2015/V30/I20/145