Abstract:An IDA-PB control strategy suiting for three-phase voltage-type PWM rectifier is proposed. The port controlled Hamiltonian (PCH)model of the PWM rectifier is established based on the Hamilton equations firstly. Then, the IDA-PB strategy of the PWM rectifier is designed utilizing the passivity hypostasis. Finally, the validity of the proposed strategy is verified by simulation. The simulation results show that the proposed IDA-PB control strategy has good performance both in dynamic state and steady state.
[1] Blasko V, Kaura V. A new mathematical model and control of a three-phase AC-DC voltage source converter[J]. IEEE Transactions on Power Electronics, 1997, 12: 116-123. [2] Wu R, Dewan S B, Slemon G R. Analysis of an ac-to-dc voltage source converter using PWM with phase and amplitude control[J]. IEEE Trans. on Industrial Application, 1991, 27(2): 355-364. [3] Malinowski M, Kazmiekowski M P, Hansen S, et al. Virtual-flux-based direct power control of three-phase PWM rectifiers[J]. IEEE Trans. on Industrial Applica- tion, 2001, 37(4): 1019-1027. [4] Komurcugil H, Kukrer O. Lyapunov-based control for three-phase PWM AC-DC voltage-source converters[J]. IEEE Trans. on Power Electronics, 1998, 13(5): 801-813. [5] Lee D C. Advanced nonlinear control of three-phase PWM rectifiers[J]. IEE Proceedings Electrical Power Application, 2000, 147(5): 361-366. [6] Carles B, Arnau D C, Enric F. IDA-PBC controller for a bidirectional power flow full-bridge rectifier[C]. Proc.of the 44th IEEE Conference on Decision and Control, 2005: 422-425. [7] Carles G, Enric F, Robert G. Robust controller for full-bridge rectifier using the IDA approach and GSSA modeling[J]. IEEE Trans. on Circuits and Systems, 2005, 52(3): 609-612. [8] Lee T S. Input-output linearization and zero-dynamics control of three-phase AC-DC voltage-source conver- ters[J]. IEEE Trans. on Power Electronics, 2003, 18(1): 11-22. [9] Silva J F. Sliding-mode control of boost-type unity- power-factor PWM rectifiers[J]. IEEE Trans. on Industrial Electronics, 1999, 46(3): 594-603. [10] Ortega R, Loria A, Nicklasson P J, et al. Passivity- based control of euler-lagrange systems; mechanical, electrical and electromechanical applications[M]. Lon- don: Springer-Verlag, 1998. [11] Hernandez C, Vazquez N, Alvarez J, et al. Modified passive-based control law for the boost inverter[C]. ISIE'03 Symposium, 2003, 2(2): 764-768. [12] Duindam V, Stramigioli S, Scherpen J M A. Passive compensation of nonlinear robot dynamics[J]. IEEE Trans. on Robotic and Automatic, 2004, 20(3): 480- 487. [13] Espinosa Perez G, Maya Ortiz P, Velasco Villa M, et al. Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[J]. IEEE Trans. on Control System Technology, 2004, 12(3): 439-448. [14] Rodriguez H, Ortega R, Escobar G. A new family of energy-based non-linear controllers for switched power converters[C]. Proc. of ISIE, IEEE, 2001: 723-727. [15] Ortega R, Eloísa G C. Interconnection and damping assignment passivity-based control: a survey[J]. Euro- pean Journal of Control, 2004: 1-27.