Abstract:In high performance AC system, whether the flux position can be obtained correctly or not will influence the dynamic and steady state performance. Induction motor full model realizes motor speed on-line identification as the parameter, besides motor current and flux real-time observation as state variables simultaneously. Research is done on the convergence characteristics of flux observation in the process of estimating motor parameters and variables. Due to the nonlinearities of full model, singularity theory is adopted, dividing full model into speed identification model and flux observation model, with the two models separated on time scale. By analyzing the eigenvalue distribution and damp ratio of flux observation subsystem, convergence and influence factors are studied. Research results show that the damp ratio in the middle and high speed range needs to be improved and the corresponding strategy of improving convergence is proposed. Simulation and experiments verify the validity of analysis method and the feasibility of proposed strategy.
邓歆, 张广明, 王德明, 梅磊, 欧阳慧珉. 基于全阶模型的异步电机磁链观测收敛性分析与对策[J]. 电工技术学报, 2015, 30(1): 61-71.
Deng Xin, Zhang Guangming, Wang Deming, Mei Lei, Ouyang Huiming. Convergence Analysis and Corresponding Strategy of Full Model based Induction Motor Flux Observation. Transactions of China Electrotechnical Society, 2015, 30(1): 61-71.
[1] 沈安文, 张侨. 基于补偿策略的通用变频器高性能控制方法研究[J]. 电气传动, 2007, 37(1): 16-18. Sheng Anwen, Zhang Qiao. Compensation strategy based research on high performance control method of general purpose[J]. Electric Drive, 2007, 37(1): 16-18. [2] Garcia M, Lipo T A, Novotny D W. A new induction motor V/f control method capable of high-performance regulation at low speed[J]. IEEE Transactions on Industry Applications, 1998, 34(4): 813-821. [3] 刘洋. 高性能主轴感应电机驱动系统研究与开发[D]. 武汉: 华中科技大学, 2009. [4] 张兴华, 孙振兴, 王德明. 电动汽车用感应电机直接转矩控制系统的效率最优控制[J]. 电工技术学报, 2013, 28(4): 255-260. Zhang Xinghua, Sun Zhenxing, Wang Deming. Optimal efficiency control of direct torque controlled induction motor drives for electric vehicles[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 255-260. [5] Bazanella A S, Reginatto R. Robustness margines for indirect field-oriented control of induction motors[J]. IEEE Transactions on Automatic Control, 2000, 45(6): 1226-1231. [6] 陈振锋, 钟彦儒, 李洁, 等. 基于改进磁链观测器的感应电机转速辨识[J]. 电工技术学报, 2012, 27(4): 42-47. Chen Zhenfeng, Zhong Yanru, Li Jie, et al. Speed identification for induction motor based on improved flux observer[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 42-47. [7] 尹忠刚, 刘静, 钟彦儒, 等. 基于双参数模型参考自适应的感应电机无速度传感器矢量控制低速性能[J]. 电工技术学报, 2012, 27(7): 124-130. Yin Zhonggang, Liu Jing, Zhong Yanru, et al. Low- speed performance for induction motor sensorless vector control based on two-parameter model reference adaptation[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 124-130. [8] 邓歆. 异步电机全阶磁链观测器的分析、设计及其应用研究[D]. 武汉: 华中科技大学, 2010. [9] 张永昌, 赵争鸣, 张颖超, 等. 基于全阶观测器的三电平逆变器异步电机无速度传感器矢量控制系统[J]. 电工技术学报, 2008, 23(11): 34-40. Zhang Yongchang, Zhao Zhengming, Zhang Yingchao, et al. Sensorless vector control system of induction motor fed by three-level inverter using a full order observer[J]. Transactions of China Electrotechnical Society, 2008, 23(11): 34-40. [10] Hinkkanen M. Analysis and design of full-order flux observers for sensorless induction motors[J]. IEEE Transations on Industrial Electronics, 2004, 51(5): 1033-1040. [11] Kim J H, Woo J, Ki S. Novel rotor-flux observer using observer characteristic function in complex vector space for field-oriented induction motor drives[J]. IEEE Transaction on Industry Applications, 2002, 38(5): 1334-1343. [12] Kubota H, Matsuse K. New adaptive flux observer of induction motor for wide speed range motor drives[C]. IEEE IECON'90, 1990: 921-922. [13] Maes J, Melkebeek J A. Speed sensorless direct torque control of induction motors using an adaptive flux observer[J]. IEEE Transactions on Industry Applications, 2000, 36(4): 778-785. [14] Vicente I, Endemano A, Garin X, et al. Adaptive full order observer based stable speed sensorless scheme for vector controlled induction motor drives[C]. EPE'09, 2009: 1-10. [15] Kubota H, Matsuse K, Hori Y. Behavior of sensorless induction motor drives in regenerating mode[C]. Proceedings of Power Conversion Conference, Nagaoka, 1997, 2: 549-552. [16] Suwankawin S, Sangwongwanich S. A speed-sensorless IM drive with decoupling control and stability analysis of speed estimation[J]. IEEE Transations on Industrial Electronics, 2002, 49(2): 444-455. [17] Suwankawin S, Sangwongwanich S. Design strategy of an adaptive full-order observer for speed-sensorless induction-motor drives-tracking performance and stabilization[J]. IEEE Transations on Industrial Electronics, 2006, 53(1): 96-119. [18] Harnefors L, Hinkkanen M. Complete stability of reduced-order and full-order observers for sensorless IM drives[J]. IEEE Transations on Industrial Electronics, 2008, 55(3): 1319-1329. [19] Kubota H, Matsuse K, Nakano T. DSP-based speed adaptive flux observer of induction motor[J]. IEEE Transactions on Industry Applications, 1993, 29(2): 344-348. [20] Yang G, Chin T H. Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter- induction motor drive[J]. IEEE Transactions on Industry Applications, 1993, 29(4): 820-825. [21] Rashed M, Stronach F, Vas P. A new stable MRAS- based speed and stator resistance estimators for sensorless vector control induction motor drives at low speeds[C]. 38th IAS Annual Meeting, 2003, 2: 1181-1188. [22] Kubota H, Matsuse K. Speed sensorless field-oriented control of induction motor with rotor resistance adapta- tion[J]. IEEE Transactions on Industry Applications, 1994, 30(5): 1219-1224. [23] Harnefors L. Design and analysis of general rotor flux oriented vector control systems[J]. IEEE Transactions on Industrial Electronics, 2001, 48(2): 383-390.