Abstract:Nonzero elements compressed storage is a key technique for dealing with super-large sparse matrices in finite element(FE) analysis, and a proper data structure helps to improve the computation efficiency significantly. A new algorithm for nonzero elements storage is presented based on the fact that the sides of the FE elements are one-to-one corresponding to the nonzero elements of the global FE matrix, consequently, the side information can be used for indexing the nonzero elements in the compressed vector. Since the position of each element in the compressed vector is predefined in the meshing procedure, the assembly and the compression storage of the global matrix, along with the application of the boundary conditions, can be directly done in the element analysis progress, with no need of cumbersome addressing operations. The sparse matrix-vector multiplication can also be calculated fast and conveniently. Data structure and algorithm is discussed in detail, and the effectiveness of the method is validated through a FEM analysis of an eddy current testing problem. The presented method, promising a significant reduction of the memory as well as the CPU time requirements, is suitable for FE analysis of high-dimensional problems and of high-order elements.
陈德智, 姜贺, 张哲, 潘瑞敏. 有限元法的一种数据结构[J]. 电工技术学报, 2015, 30(1): 1-7.
Chen Dezhi, Jiang He, Zhang Zhe, Pan Ruimin. A Data Structure for Finite Element Method. Transactions of China Electrotechnical Society, 2015, 30(1): 1-7.
[1] 谢德馨, 杨仕友. 工程电磁场数值分析与综合[M]. 北京: 机械工业出版社, 2009. [2] 李立毅, 黄旭珍, 寇宝泉, 等. 基于有限元法的圆筒型直线电机温度场数值计算[J]. 电工技术学报, 2013, 28(2): 132-138. Li Liyi, Huang Xuzhen, Kou Baoquan, et al. Numerical calculation of temperature field for tubular linear motor based on finite element method[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 132-138. [3] 黎卫国, 郝艳捧, 熊国锟, 等. 覆冰复合绝缘子电位分布有限元仿真[J]. 电工技术学报, 2012, 27(12): 29-35. Li Weiguo, Hao Yanpeng, Xiong Guokun, et al. Simulation and analysis of potential distribution of iced composite insulator based on finite element method [J]. Transactions of China Electrotechnical Society, 2012, 27(12): 29-35. [4] 徐超, 王长龙, 绳慧, 等. 三维磁场计算的有限元神经网络模型[J]. 电工技术学报, 2012, 27(11): 126-132. Xu Chao, Wang Changlong, Sheng Hui, et al. FENN model for 3-D magnetic field calculation[J]. Transac- tions of China Electrotechnical Society, 2012, 27(11): 126-132. [5] Jin Jianming. 电磁场有限元方法[M]. 王建国译. 西安: 西安电子科技大学出版社, 2001. [6] 秦太验, 徐春晖, 周喆. 有限元法及其应用[M]. 北京: 中国农业大学出版社, 2011. [7] 侯新录. 结构分析中的有限元法与程序设计: 用Visual C++实现[M]. 北京: 中国建材工业出版社, 2004. [8] 徐树方.矩阵计算的理论与方法[M]. 北京: 北京大学出版社, 1995. [9] Ahamed A K C, Magoules F. Fast sparse matrix- vector multiplication on graphics processing unit for finite element analysis[C]. 2012 IEEE 14th Interna- tional Conference on HPCC, 2012. [10] Niclas J. Optimizing sparse matrix assembly in finite element solvers with one-sided communication[J]. Lecture Notes in Computer Science, 2013(7851): 128-139. [11] Kaltofen E, Lobo A. Distributed matrix-free solution of large sparse linear systems over finite fields[J]. Algorithmica(New York), 1999, 24(3): 331-348. [12] 梯华森 R P. 稀疏矩阵[M]. 朱季讷译. 北京: 科学出版社, 1981. [13] Rajasankar J, Iyer N R. A procedure to assemble only non-zero coefficients of global matrix in finite element analysis[J]. Computer & Structures, 2000, 77(3): 595- 599. [14] 梁振光, 唐任远. 有限元系数矩阵的快速存储技术[J]. 电工电能新技术, 2004, 23(4): 24-25, 28. Liang Zhenguang, Tang Renyuan. Rapid storage technique of coefficient matrix in finite element method [J]. Advanced Technology of Electrical Engineering and Energy, 2004, 23(4): 24-25, 28. [15] 侯建国, 安旭文. 有限单元法程序设计[M]. 2版. 武汉: 武汉大学出版社, 2012. [16] 姚松, 田红旗. 有限元刚度矩阵的压缩存贮及组集[J]. 中南大学学报(自然科学版), 2006, 37(4): 826- 830. Yao Song, Tian Hongqi. Compressed storage scheme and assembly procedure of global stiffness matrix in finite element analysis[J]. J Central South University (Science and Technology), 2006, 37(4): 826-830. [17] Bao Y, Du G, Chen W, et al. Storage method of FE equations and its application in numerical simulation of sheet metal forming[C]. Proceedings of the 10th Asia- Pacific Conference, Engineering Plasticity and Its Applications, AEPA 2010: 182-187. [18] 纪国良, 冯仰德. 大规模有限元刚度矩阵存储及其并行求解算法[J]. 数值计算与计算机应用, 2012, 33(3): 230-240. Ji Guoliang, Feng Yangde. Parallel solving large- scale linear system of FEM based on compressed storage format[J]. J Numerical Methods & Computer Applications, 2012, 33(3): 230-240. [19] 王忠雷, 赵国群, 马新武. 三维有限元刚度矩阵的压缩存储算法[J]. 材料科学与工艺, 2012, 20(2): 96-100, 107. Wang Zhonglei, Zhao Guoqun, Ma Xinwu. Compressed storage algorithm of 3D FEM stiffness matrix[J]. Materials Science and Technology, 2012, 20(2): 96- 100, 107.