Permanent Magnet Synchronous Motors Parameters Identification Based on Cauchy Mutation Particle Swarm Optimization
Fu Xiaoli1, 2, Gu Hongbing2, 3, Chen Guocheng2, 3, Zou Junzhong1, Zhang Jian1
1. East China University of Science and Technology Shanghai 200237 China; 2. Jiangsu Star Industry Technology Co. Ltd Changzhou 213022 China; 3. Shanghai University Shanghai 200072 China
Abstract:The variation of permanent magnet synchronous motor(PMSM) parameters has an effect on the performance of vector control servo system, so they must to be identified at real time. The stator is equaled to 1st order inertia system and the mathematical model is built under d-q coordinates. A particle swarm optimization(PSO) based on mean best position and Cauchy mutation combined search is proposed and used to identify the resister, inductor and flux linkage of the stator. Both the simulation and the experiment examples demonstrate that the proposed algorithm has powerful optimizing ability, good stability and higher optimizing precision and good performance.
[1] Bose B K. Power electronics and motor drives recent progress and perspective[J]. IEEE Transactions on Industrial Electronics, 2009, 56(2): 581-588. [2] 王松, 刘明光, 石双双, 等. 基于卡尔曼滤波和神经网络的PMSM参数辨识[J]. 北京交通大学学报, 2010, 34(2): 124-127. Wang Song, Liu Mingguang, Shi Shuangshuang, et al. Identification of PMSM based on EKF and Elman neural network[J]. Journal of Beijing Jiaotong University, 2010, 34(2): 124-127. [3] Samuel J Underwood, Iqbal Husain. Online parameter estimation and adaptive control of permanent magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2435-2443. [4] Fan Shicai, Luo Wuqiao. A hybrid speed sensorless control strategy for PMSM Based on MRAS and fuzzy control[C]. Power Electronics and Motion Control Conference(IPEMC), 2012: 2976-2980. [5] 刘洋, 赵金, 王庆义, 等. 间接矢量控制系统中的异步电动机参数辨识[J]. 电工技术学报, 2008, 23(7): 21-26. Liu Yang, Zhao Jin, Wang Qingyi, et al. An off-line parameter identification method for indirect vector controlled induction motor drive[J]. IEEE Transactions on Power Systems, 2008, 23(7): 21-26. [6] Chen Zhenfeng, Zhong Yanru, Li Jie. Parameter identification of induction motors using ant colony optimization[C]. IEEE World Congress on Computa- tional Intelligence, 2011: 1611-1616. [7] Emara H M, Elshamy W Bahgat. A parameter identification of induction motor using modified particle swarm optimization algorithm[C]. IEEE World Congress on Computational Intelligence, 2011: 841-847. [8] Chen Wei, Gong Qingwu, Wang Tao, et al. A real parameter genetic algorithm application in parameters identification for synchronous generator[C]. IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009: 762-766. [9] Xu Sun J WB. A global search strategy of quantum behaved particle swarm optimization[C]. Proc. IEEE Conf. on Cybernetics and Intelligent Systems, 2004: 111-116. [10] 王晖. 基于柯西变异的混合粒子群算法研究[D]. 武汉: 中国地质大学(武汉), 2008. [11] 陈振锋, 钟彦儒, 李洁, 等. 感应电机参数辨识三种智能算法的比较[J]. 电机与控制学报, 2010, 14(11): 7-12. Chen Zhenfeng, Zhong Yanru, Li Hao, et al. Compari- sion of three intelligent optimization algorithms for parameter identification of induction motors[J]. Electric Machines and Control, 2010, 14(11): 7-12. [12] 中村政俊, 后藤聪, 良修郭. 机电一体化伺服控制—工业应用中的问题及其理论解答[D]. 北京: 清华大学, 2012. [13] Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc. IEEE Int. Conf. on Neural Networks, 1995: 1942-1948. [14] Li Xiao, Wang Tao, Fan Wei. Adaptive parameter identification based on dead-time compensation for permanent magnet synchronous machines[J]. Automa- tion and Systems (ICCAS), 2011: 1570-1575.