Abstract:The engineering reality permanent magnet synchronous motor system is a kind of strong nonlinear dynamic system. It is hard to obtain high precision parameters estimated value using the conventional method. Comprehensive learning particle swarm optimization (CLPSO) is a new global optimization algorithm which can solve multi-modal problem efficiently. Meanwhile, the artificial immune system (AIS) has strong local search ability. In this paper, a novel algorithm named comprehensive learning particle swarm optimization evolutionary computing model based on immune mechanism is proposed, which combined CLPSO with artificial immune system (AIS). Finally, the proposed method is further verified by its application in permanent magnet synchronous machines multi-parameter identification and modeling, which shows that its performance is much better than other PSOs in simultaneously estimating the machine dq-axis inductances, stator winding resistance and rotor flux linkage. Additionally, it is also effective tracking the varied parameter.
刘朝华, 李小花, 周少武, 刘侃. 面向永磁同步电机参数辨识的免疫完全学习型粒子群算法[J]. 电工技术学报, 2014, 29(5): 118-126.
Liu Zhaohua, Li Xiaohua, Zhou Shaowu, Liu Kan. Comprehensive Learning Particle Swarm Optimization Algorithm based on Immune Mechanism for Permanent Magnet Synchronous Motor Parameter Identification. Transactions of China Electrotechnical Society, 2014, 29(5): 118-126.
[1] Ooshima M A Chiba, Rahman A, et al. An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation[J]. IEEE Transactions on Energy Conversion, 2004, 19(3): 569-575. [2] Rahman M A, Vilathgamuwa D M, Uddin M N, et al. Nonlinear control of interior permanent magnet synchronous motor[J]. IEEE Transactions on Industry Applications, 2003, 39(2): 408-416. [3] Rashed M, Macconnell P F A, Stronach A F, et al. Senseless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation[J]. IEEE Transaction on Industrial Application, 2007, 54(3): 1664-1675. [4] Reigosa D, Briz F, Garcia P, et al. Magnet temperature estimation in surface PM machines using high frequency signal injection[J]. IEEE Transactions on Industry Applications, 2010, 46(4): 1468-1475. [5] Ramakrishnan R, Islam R, Islam M, et al. Real time estimation of parameters for controlling and monitoring [C]. Proceedings of IEEE International Electric Machines and Drives Conference, Miami, USA, 2009: [6] Bolognani S, Tubiana L, Zigliotto M. Extended Kalman filter tuning in sensorless PMSM drives[J]. IEEE Transactions on Industry Applications, 2003, 39(6): 1741-1747. [7] Liu K, Zhang Q, Chen J T, et al. Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking[J]. IEEE Transac- tions on Industrial Electronics, 2011, 58(5): 1776-1788. [8] Liu Z H, Zhang J, Zhou S W, et al. Co evolutionary particle swarm optimization using AIS and its application in multi-parameter estimation of PMSM [J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1921-1935. [9] Liu L, Liu W X, David A Cartes. Permanent magnet synchronous motor parameter identification using particle swarm optimization[J]. International Journal of Computational Intelligence Research, 2008, 4(2): 211-218. [10] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295. [11] Wu H, Geng J P, Jin R H, et al. An improved comprehensive learning particle swarm optimization and its application to the semiautomatic design of antennas[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 3018-3028. [12] 王瑜, 李斌, 袁博. 混合SQP的基于完全学习的粒子群优化算法在电力系统中经济分配问题的应用[J]. 中国科学: 信息科学, 2010, 40(3): 403-411. Wang Yu, Li Bin, Yuan Bo. Hybrid comprehensive learning particle swarm optimization based on SQP and application in power system economic dispatch problem[J]. Chinese Science: Information, 2010, 40(3): 403-411. [13] Dasgupta D. Advances in artificial immune systems [J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 40-49. [14] Eberhart R, Kennedy J A. A new optimizer using particleswarmtheory[C]. Proceeding of International Symposium on Micromachineand Human Science, Nagoya, Japan: IEEE, 1995: 39-43. [15] Ge H W, Sun L, Liang Y C, et al. An effective PSO and AIS-based hybrid intelligent algorithm for job- shop scheduling[J]. IEEE Transactions on Systems, Man, and Cybernetics, PartA, Systems and Humans, 2008, 38(2): 358-363. [16] 刘朝华, 张英杰, 章兢, 等. 一种双态免疫微粒群算法[J]. 控制理论与应用, 2011, 28(1): 65-72. Liu Zhaohua, Zhang Yingjie, Zhang Jing, et al. A novel binary-state immune particle swarm optimization algorithm[J]. Control Theory & Applications, 2011, 28(1): 65-72. [17] Ling S H, Iu H H, Chan K Y, et al. Hybrid particle swarm optimization with wavelet mutation and its industrial applications[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2008, 38(3): 743-63. [18] Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2009, 39(6): 1362-1380.