Abstract:For confirming the mechanism of the passive electromagnetic armor, the characteristics of the current effect on shaped charge jet are researched. Based on the equivalent circuit model, time and frequency characteristic of pulse current are analyzed and a frequency-domain analysis method of skin effect is introduced. Calculation method of pulse current density distribution in shaped charge jet is obtained and the change rule of the skin depth during the discharge is researched. Calculation errors are given and the validity of the analysis method is approved by contrasting with the FEM analysis results. Finally, distribution characteristic of the current effect on the shaped charge jet element is obtained based on action time model. The results indicate that, pulse current is broadband distribution, and its current distribution is different from single-frequented time-harmonic current. Current density increases with depth decreases not all the time. It declines on the surface of the conductor at the trailing edge of the pulse current. And the current effect is concentrated on tail of the jet whose velocity is less than 4km/s, while the effect intensity becomes larger as the element closer to the surface.
[1] Walker E H. Defeat of shaped-charge devices by active armor[R]. Aberdeen Proving Ground, MD: U. S. Army Ballistic Research Laboratory, 1973. [2] 雷彬, 陈少辉, 吕庆敖, 等. 被动电磁装甲对金属射流横向电磁力的计算及验证[J]. 高电压技术, 2011, 37(10): 2569-2574. Lei Bin, Chen Shaohui, Lü Qingao, et al. Calculation and verification of lateral electromagnetic force on the shaped charge jet in the passive electromagnetic armor[J]. High Voltage Engineering, 2011, 37(10): 2569-2574. [3] 苑希超, 雷彬, 李治源, 等. 被动电磁装甲对金属射流箍缩电磁力的计算及验证[J]. 高电压技术, 2013, 39(1): 251-256. Yuan Xichao, Lei Bin, Li Zhiyuan, et al. Calculation and verification of pinch electromagnetic action on the shaped charge jet in the passive electromagnetic armor[J]. High Voltage Engineering, 2013, 39(1): 251-256. [4] Wickert M. Electric armor against shaped charges: Analysis of jet distortion with respect to jet dynamics and current flow[J]. IEEE Transactions on Magnetics, 2007, 43(1): 426-429. [5] Appelgren P, Larsson A, Lundberg P, et al. Studies of electrically-exploded conductors for electric armour applications[C]. 2nd Euro-Asian Pulsed Power Conference Vilnius, Lithuania, 2008: 1072-1074. [6] Simonyi K. Foundations of electrical engineering[M]. New York: Macmillan, 1963. [7] 喻乐, 和敬涵, 王小君, 等. 基于阶跃级数逼近法的城市轨道交通钢轨短路电流趋肤效应研究[J]. 电工技术学报, 2012, 27(4): 7-12. Yu Le, He Jinghan, Wang Xiaojun, et al. Research of short-circuit skin effect current of DC railway based on step series algorithm[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 7-12. [8] 江壮贤, 庄劲武, 王晨, 等. 基于电磁斥力原理的高速触头机构仿真分析与设计[J]. 电工技术学报, 2011, 26(8): 172-177. Jiang Zhuangxian, Zhuang Jinwu, Wang Chen, et al. Simulation analysis and design of a high speed contact mechanism based on electro-magnetic repulsion mechanism[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 172-177. [9] 郑雪, 乐健, 蔡伟, 等. 电力线载波通信元件阻抗模型研究综述[J]. 电力系统保护与控制, 2012, 40(6): 135-141. Zheng Xue, Le Jian, Cai Wei, et al. Overview of the component impedance modeling research of power line communication[J]. Power System Protection and Control, 2012, 40(6): 135-141. [10] 张皓岚, 贺慧英, 陈涛, 等. 舰船电力载波通信的阻抗匹配设计[J]. 电力系统保护与控制, 2014, 42(2): 104-110. Zhang Haolan, He Huiying, Chen Tao, et al. Impedance matching research on power line carrier applied to shipboard electric network[J]. Power System Protection and Control, 2014, 42(2): 104-110. [11] 喻乐, 和敬涵, 王小君, 等. 基于Mexh小波变换的直流馈线保护方法[J]. 电力系统保护与控制, 2012, 40(11): 42-45, 54. Yu Le, He Jinghan, Wang Xiaojun, et al. DC feeder protection based on Mexh wavelet[J]. Power System Protection and Control, 2012, 40(11): 42-45, 54. [12] Edward J T, Thomas T H, Pfullerton H. Transient resistance of conductors[J]. IEEE Transactions on Power Apparatus and Systems, 1968, 87(2): 455-462. [13] Yen C S, Fazarin Z, Wheeler R L. Time-domain skin- effect model for transient analysis of lossy transmission lines[J]. Proc. IEEE, 1982, 70(7): 750-757. [14] Kim S, Neikirk D P. Compact equivalent circuit model for the skin effect[C]. IEEE MTT2S International Microwave Symposium Digest, San Franscisco, 1996: 1815-1818. [15] Lawrence J G. Frequency- and time-domain analysis of skin effects[J]. IEEE Transactions on Magnetics, 1996, 32(1): 220-229. [16] Gatous O M O, Pissolato J. Frequency-dependent skin-effect formulation for resistance and internal inductance of a solid cylindrical conductor[J]. IEE Pro. Microw Antennas Propag, 2004, 151(3): 212-216. [17] Ausserhofer S, Biro O, Preis K. Frequency and time domain analysis of nonlinear periodic electromagnetic problems[C]. International Conference on Electro- magnetics in Advanced Applications, Torino, Italy, 2007. [18] Bíró O, Böhm P, Preis K, et al. Edge finite elements analysis of transient skin effect problems[J]. IEEE Transactions on Magnetics, 2000, 36(4): 835-839. [19] Kim H K, Jung J K, Park K Y, et al. Efficient technique for 3-D finite element analysis of skin effect in current-carrying conduction[J]. IEEE Transac- tions on Magnetics, 2004, 40(2): 1326-1329. [20] 刘素贞, 张闯, 金亮, 等. 电磁超声换能器的三维有限元分析[J]. 电工技术学报, 2013, 28(8): 7-12. Liu Suzhen, Zhang Chuang, Jin Liang, et al. 3D finite element analysis of electromagnetic ultrasonic transducers[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 7-12. [21] Allison F E, Vitali R A. A new method of computing penetration variables for shaped-charge jets[R]. Maryland: Ballistic Research Laboratory, 1963.