Abstract:Through the analysis of experimental results of prototyped switched reluctance motor (SRM), the effect of its speed, phase current, turn-on angle and turn-off angle on torque are introduced firstly. A SRM control system with optimal current mode is realized based on the foundation of its static multivariable neural network controller and the design of its training method to train the neural network secondly. To obtain training data of neural network efficiently, a variable step-size optimization method based on least square method is proposed. Current optimal control system can be realized to make output maximum torque by adjusting the turn-on and turn-off angle. Then the presented neutral controller is combined with the normal PID controller to achieve its ability of dynamic adjustment. Finally, the effectiveness of the proposed design is demonstrated through prototype SRM experiments.
张云, 徐衍亮, 孔辉, 李元东. 电流最优的多变量静态神经网络开关磁阻电机控制[J]. 电工技术学报, 2013, 28(8): 250-258.
Zhang Yun, Xu Yanliang, Kong Hui, Li Yuandong. Switched Reluctance Motor Control Based on Multivariable Neural Network with Optimal Phase Current. Transactions of China Electrotechnical Society, 2013, 28(8): 250-258.
[1] 吴红星. 开关磁阻电机系统理论与控制技术[D]. 北京: 中国电力出版社, 2010.
[2] 王宏华. 开关型磁阻电动机调速控制技术[M]. 北京: 机械工业出版社, 1999.
[3] 曲荣海, 姚若萍, 刘大庆, 等. 开关磁阻电机滑膜变结构控制与仿真[J]. 清华大学学报, 1997, 37(4): 11-13.
Qu Ronghai, Yao Ruoping, Liu Daqing, et al. Variable structure control and simulation of an SRM drive[J]. Journal of Tsinghua University, 1997, 37(4): 11-13.
[4] 夏长亮, 文德, 范娟, 等. 基于RBF神经网络的无刷直流电机无位置传感器控制[J]. 电工技术学报, 2002, 17(3): 26-30.
Xia Changliang, Wen De, Fan Juan, et al. Based on RBF neural network position sensorless control for brushless DC motors[J]. Transactions of China Electrotechnical Society, 2002, 17(3): 26-30.
[5] 何玉彬, 王晓予, 闫桂荣. 神经网络在线学习模糊自适应控制及其应用[J]. 中国电机工程学报, 2000, 20(10): 68-70.
He Yubin, Wang Xiaoyu, Yan Guirong. Nerual network online learning fuzzy adaptive control and its application[J]. Proceedings of the CSEE, 2000, 20(10): 68-70.
[6] 夏长亮, 王明超. 基于RBF神经网络的开关磁阻电机单神经元PID控制[J]. 中国电机工程学报, 2008, 28(8): 161-165.
Xia Changliang, Wang Mingchao. Single neuron PID control for switched reluctance motors based on RBF neural network[J]. Proceedings of the CSEE, 2008, 28(8): 161-165.
[7] 郑洪涛, 蒋静坪. 开关磁阻电机高性能转矩控制策略研究[J]. 电工技术学报, 2005, 20(9): 24-28.
Zheng Hongtao, Jiang Jingping. Study on high-grade torque control strategies for switched reluctance motor[J]. Transactions of China Electrotechnical Society, 2005, 20(9): 24-28.
[8] 夏长亮, 陈自然, 李斌. 开关磁阻电机神经网络自适应PWM转速控制[J]. 中国电机工程学报, 2006, 26(13): 141-145.
Xia Changliang, Chen Ziran, Li Bin. Neural network based adaptive PWM speed control in switched reluctance motors[J]. Proceedings of the CSEE, 2006, 26(13): 141-145.
[9] Hornik K M, Stinchcombe M, White H. Multilayer feedback networks are universal approximators[J]. Neural Networks, 1989, 2(2): 359-366.
[10] 从爽. 神经网络、模糊系统及其在运动控制中的应用[M]. 合肥: 中国科学技术大学出版社, 2001.
[11] 何丹, 戴先中, 王勤. 神经网络广义逆系统控制[J]. 控制理论与应用, 2002, 19(1): 34-40.
He Dan, Dai Xianzhong, Wang Qin. Generalized ANN inverse control method[J]. Control Theory & Applications, 2002, 19(1): 34-40.
[12] Jovanovic M, Annexstein F, Berman K. Modeling peer-to-peer network topologies through small-World models and power laws[C]. Proceedings. of the IX. Telecommunications Forum TELFOR, Belgrade, 2001.
[13] 王喜莲, 王旭东. 开关磁阻电机角度最优控制[J]. 电机与控制学报, 2006, 10(6): 587-591.
Wang Xilian, Wang Xudong. Angles optimal control of switched reluctance motor[J]. Electric Machines and Control, 2006, 10(6): 587-591.