Wind Energy Conversion System Based on PMSG and Its Power Converter Technology
Xia, Changliang1, 2
1. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy Tianjin Polytechnic University Tianjin 300387 China 2. Tianjin University Tianjin 300072 China
Abstract:As a kind of efficient and clean renewable energy, wind energy receives much concern. Wind energy conversion system (WECS) based on permanent magnet synchronous generator (PMSG) has become one of the most significant development directions of wind energy technologies because of its outstanding comprehensive superiority. This paper discusses the structures, driven types and operation characteristics of PMSGs in WECSs. Then the topologies, controls and applications of the power converters suitable for WECSs based on PMSG are illustrated. The development trend of WECS based on PMSG technologies are analyzed finally. With rapid development of wind energy and its related technologies, the WESCs based on PMSGs will have broad prospects.
夏长亮. 永磁风力发电系统及其功率变换技术[J]. 电工技术学报, 2012, 27(11): 1-13.
Xia Changliang. Wind Energy Conversion System Based on PMSG and Its Power Converter Technology. Transactions of China Electrotechnical Society, 2012, 27(11): 1-13.
[1] 夏长亮. 永磁风力发电系统运行与控制[M]. 北京: 科学出版社, 2012.
[2] Global Wind Energy Council. Global wind 2011 report[R/OL]. www.gwec.net, 2012.
[3] Poddar G, Joseph A, Unnikrishnan A K. Sensorless variable-speed controller for existing fixed-speed wind power generator with unity-power- factor operation[J]. IEEE Transactions on Industrial Electronics, 2003, 50(5): 1007-1015.
[4] 陈炜, 陈成, 宋战锋, 等. 双馈风力发电系统双PWM变换器比例谐振控制[J]. 中国电机工程学报, 2009, 29(15): 1-7.
Chen Wei, Chen Cheng, Song Zhanfeng, et al. Proportional-resonant control for dual PWM converter in doubly fed wind generation System[J]. Proceedings of the CSEE, 2009, 29(15): 1-7.
[5] 夏长亮, 王慧敏, 宋战锋, 等. 变速恒频双馈风力发电系统空载并网积分变结构控制[J]. 天津大学学报, 2008, 41(11): 1281-1286.
Xia Changliang, Wang Huimin, Song Zhanfeng, et al. Integral variable structure controller for no-load cutting-in control of variable speed constant frequency wind-power system with doubly-fed induction generator[J]. Journal of Tianjin University, 2008, 41(11): 1281-1286.
[6] 夏长亮, 宋战锋. 双馈风力发电系统转子电流自抗扰控制[J]. 电工电能新技术, 2007, 26(3): 11-14, 19.
Xia Changliang, Song Zhanfeng. Rotor current control of doubly-fed induction generator based on active-disturbances-rejection controller[J]. Advanced Technology of Electrical Engineering and Energy, 2007, 26(3): 11-14, 19.
[7] 宋战锋, 夏长亮. 基于定子磁链的双馈风力发电系统矩阵变换器调制策略[J]. 电力科学与技术学报, 2009, 24(3): 10-14.
Song Zhanfeng, Xia Changliang. A novel modulation scheme for matrix converters of doubly-fed induction generators based on stator flux[J]. Journal of Electric Power Science and Technology, 2009, 24(3): 10-14.
[8] 宋战锋. 低电压故障下双馈风力发电系统特性分析与运行控制[D]. 天津: 天津大学, 2009.
[9] Song Zhanfeng, Shi Tingna, Xia Changliang, et al. A novel adaptive control scheme for dynamic performance improvement of DFIG-based wind turbines[J]. Energy, 2012, 38(1): 104-117.
[10] Song Zhanfeng, Xia Changliang, Shi Tingna. Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect[J]. Applied Energy, 2010, 87(10): 3283-3293.
[11] Siegfriedsen S, Bohmeke G. Multibrid technology—a significant step to multi-megawatt wind turbines[J]. Wind Energy, 1998, 1(2): 89-100.
[12] Hui L, Zhe C, Henk P. Optimization of multibrid permanent-magnet wind generator systems[J]. IEEE Transactions on Energy Conversion, 2009, 24(1): 82-92.
[13] Barazarte R Y, González G G, E Hall. Comparison of electric generators used for wind generation[J]. IEEE Latin America Transactions, 2011, 9(7): 1040-1044.
[14] 张凤阁, 金石, 张武. 基于无速度传感器的无刷双馈风力发电机直接转矩控制[J]. 电工技术学报, 2011, 26(12): 20-27.
Zhang Fengge, Jin Shi, Zhang Wu. Direct torque control for brushless doubly-fed wind power generator dased on speed sensorless[J]. Transactions of China Electrotechnical Society, 2011, 26(12): 20-27.
[15] 程源, 王雪帆, 熊飞, 等. 考虑饱和影响的绕线转子无刷双馈电机性能[J]. 电工技术学报, 2012, 27(5): 164-171.
[16] 胡海燕, 潘再平. 开关磁阻风力发电系统综述[J]. 机电工程, 2004, 21(10): 48-52.
Hu Haiyan, Pan Zaiping. Summary on switched reluctance generator used in wind energy converter system[J]. Mechanical & Electrical Engineering Magazine, 2004, 21(10): 48-52.
[17] Cárdenas R, Peña R, Pérez M. Control of a Switched reluctance generator for variable-speed wind energy applications[J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 781-791.
[18] 熊立新, 高厚磊, 徐丙垠, 等. 一种开关磁阻风力发电机最大风能跟踪方法[J]. 电工技术学报, 2009, 24(11): 1-7.
Xiong Lixin, Gao Houlei, Xu Bingyin, et al. A new control method of switched reluctance generator for maximum power point tracking in wind turbine application[J]. Transactions of China Electrotechnical Society, 2009, 24(11): 1-7.
[19] Chen Y C, Pillay P, Khan A. PM wind generator topologies[J]. IEEE Transactions on Industry Application, 2005, 41(6): 1619-1626.
[20] Krishnan R. Permanent magnet synchronous and brushless DC motor drives[M]. Boca Raton: CRC Press/Taylor & Francis, 2010.
[21] Zhu Z Q, Xia Z P, Howe D. Comparison of Halbach magnetized brushless machines based on discrete magnet segments or a single ring magnet[J]. IEEE Transactions on Magnetics, 2002, 38(5): 2997-2999.
[22] Zhu Z Q, Howe D. Halbach permanent magnet machines and applications: a review[J]. IEE Electrical Power Application, 2001, 148(4): 299-308.
[23] 王秀和. 永磁电机[M]. 北京: 中国电力出版社, 2007.
[24] Manwell J F, Gowan J, Rogers A L. Wind energy explained-theory, design and application[M]. London: John Wiley&Sons, 2002.
[25] Baroudi J A, Dinavahi V, Knight A M. A review of power converter topologies for wind generators[J]. Renewable Energy, 2007, 32(14): 2369-2385.
[26] Hansen L, Helle L, Blaabjerg F, et al. Conceptual survey of generators and power electronics for wind turbines[R]. Roskilde: Risø National Laboratory, 2001.
[27] 张新房, 徐大平, 柳亦兵, 等. 风力发电技术的发展及相关控制问题综述[J]. 华北电力技术, 2005(5): 42-45.
Zhang Xinfang, Xu Daping, Liu Yibing, et al. Overview of technological developments and relevant control problems of wind turbines[J]. North China Electric Power, 2005(5): 42-45.
[28] Muljadi E, Butterfield C. Pitch controlled variable speed wind turbine generation[J]. IEEE Transactions on Industry Applications, 2001, 37(1): 240-246.
[29] 谷鑫. 直驱式永磁风力发电系统Boost斩波-三电平变换器控制[D]. 天津: 天津大学, 2010.
[30] Zhe C, Spooner E. Grid power quality with variable speed wind turbines[J]. IEEE Transactions on Energy Conversion, 2001, 16(2): 148-154.
[31] Xia Changliang, Geng Qiang, Gu Xin, et al. Input-output feedback linearization and speed control of a surface permanent magnet synchronous wind generator with the boost-chopper converter[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3489-3500.
[32] 耿强, 夏长亮, 王志强, 等. 永磁同步发电机与Boost斩波型变换器非线性速度控制[J]. 电工技术学报, 2012, 27(3): 35-43.
Geng Qiang, Xia Changliang, Wang Zhiqiang, et al. Nonlinear speed control for a permanent magnet synchronous generator and the boost-chopper converter [J]. Transactions of China Electrotechnical Society, 2012, 27(3): 35-43.
[33] Xia Changliang, Gu Xin, Shi Tingna, et al. Neutral-point potential balancing of three-level inverters in direct-driven wind energy system[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 18-29.
[34] 李建林, 高志刚, 赵斌, 等. 直驱型风电系统大容量Boost PFC拓扑及控制方法[J]. 电工技术学报, 2008, 23(1): 104-109.
Li Jianlin, Gao Zhigang, Zhao Bin, et al. Application of single-switch three-phase boost PFC in direct-drive wind power generation system[J]. Transactions of China Electrotechnical Society, 2008, 23(1): 104-109.
[35] 何海洋, 姚刚, 邓焰, 等. 一种三电平交错并联Boost变换器[J]. 电工技术学报, 2006, 21(6): 23-28, 34.
He Haiyang, Yao Gang, Deng Yan, et al. An interleaved three-level boost converter[J]. Transactions of China Electrotechnical Society, 2006, 21(6): 23-28, 34.
[36] 梁晖, 石威威. 风力发电系统多重化升压斩波器瞬时电流控制[J]. 电工技术学报, 2011, 26(4): 86-92.
Liang Hui, Shi Weiwei. Study of instantaneous current control for multiple boost converter in wind energy conversion system[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 86-92.
[37] 谷鑫, 夏长亮, 陈炜. 相差控制的Boost三电平变换器工作模式分析[J]. 中国电机工程学报, 2011, 31(27): 36-44.
Gu Xin, Xia Changliang, Chen Wei. Analysis on operating mode of boost three-level converter with phase-delay control[J]. Proceedings of the CSEE, 2011, 31(27): 36-44.
[38] 杨宇, 马西奎. 输出电压纹波对电流型Boost变换器稳定性的影响[J]. 中国电机工程学报, 2007, 27(28): 102-106.
Yang Yu, Ma Xikui. Effects of output voltage ripple on the stability of current-mode boost converters[J]. Proceedings of the CSEE, 2007, 27(28): 102-106.
[39] Nabae A, Takahashi I, Akagi H. A new neutral- point-clamped PWM inverter[J]. IEEE Transactions on Industry Application, 1981, 17(5): 518-523.
[40] Zhiguo P, Fang Zheng P, Keith A C, et al. Voltage balancing control of diode-clamped multilevel rectifier/inverter systems[J]. IEEE Transactions on Industry Applications, 2005, 41(6): 1698-1706.
[41] 张钢, 柴建云, 全恒立, 等. 直驱式风力发电变流系统拓扑方案研究[J]. 电工技术学报, 2011, 26(7): 15-20.
Zhang Gang, Chai Jianyun, Quan Hengli, et al. Study of converter system topology for direct-driven wind generation system[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 15-20.
[42] Hansen L H, Helle L, Blaabjerg F, et al. Conceptual survey of generators and power electronics for wind turbines[R]. Roskilde, Denmark: Risø National Labertory, 2001.
[43] Xibo Y, Yongdong L, Jianyun C, et al. A modular direct-drive permanent magnet wind generator system eliminating the grid-side transformer[C]. European Conference on Power Electronics and Applications, 2009: 7 pages.
[44] Senturk O S, Helle L, Munk Nielsen S, et al. Medium voltage three-level converters for the grid connection of a multi-MW wind turbine[C]. European Conference on Power Electronics and Applications, 2009: 8 pages.
[45] Skolthanarat S, Centeno V. Grid interconnection for variable-speed wind farm with multi-level inverter[C]. Power and Energy Society General Meeting of IEEE, 2008: 1-7.
[46] Gyugyi L, Pelly B. Static power frequency changers[M]. New York: Wiley, 1976.
[47] Venturini M. A new sine wave in sine wave out conversion technique which eliminates reactive elements[C]. Proceedings of Power Conference, 1980: 1-15.
[48] Alesina A, Venturini M. The generalized transformer: a new bi-directional sinusoidal waveform frequency converter with continuous variable adjustable input power factor[C]. Proceedings of IEEE Power Electronics Specialists, 1980: 242-252.
[49] Cardenas R, Pena R, Tobar G, et al. Stability analysis of a wind energy conversion system based on a doubly fed induction generator fed by a matrix converter[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 4194-4206.
[50] Barakati S M, Mehrdad K, Aplevich J D. Maximum power tracking control for a wind turbine system including a matrix converter[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 705-713.