Abstract:For the traditional eigenvalue analysis method is not suitable for analyzing the large scale high-order system and the Fourier method and Prony algorithm are incapable of dealing with nonstationary signals, a novel method, atomic sparse decomposition, is introduced in this paper which is invented to deal with nonlinear or nonstationary signals to the analysis of low-frequency oscillations. This method obtains the optimal atom from a signal by using matching pursuits (MP) algorithm with the Gabor dictionary, and makes a search for parameters using the Newton-like method and finally identified the parameters of damped sinusoids. The simulations and example analysis indicates the feasibility and validity of the new method proposed in this paper. It also provides a new way for power system stability analysis.
[1] Kundur P. Power system stability and control[M]. 北京: 中国电力出版社, 2001. [2] Jin Ma, Pu Zhang, Hongjun Fu, et al. Application of phasor measurement unit on locating disturbance source for low-frequency oscillation[J]. IEEE Transactions on Smart Grid, 2010, 1(3): 340-346. [3] Guoping Liu, Zheng Xu, Ying Huang, et al. Analysis of inter-area oscillations in the South China interconnected power system[J]. Electric Power Systems Research, 2004, (70): 38-45. [4] 束洪春. 电力工程信号处理应用[M]. 北京: 科学出版社, 2009. [5] 穆钢, 史坤鹏, 安军, 等. 结合经验模态分解的信号能量法及其在低频振荡研究中的应用[J]. 中国电机工程学报, 2008, 28(19): 36-41. Mu Gang, Shi Kunpeng, An Jun, et al. Signal energy method based on EMD and its application to research of low frequency oscillations[J]. Proceedings of the CSEE, 2008, 28(19): 36-41. [6] 郝正航, 李少波. 白噪声激励下的低频振荡模态参数辨识方法[J]. 电力系统自动化, 2007, 31(15): 26-29. Hao Zhenghang, Li Shaobo. A white noise excitation based identification method for low-frequency oscillation modal parameters[J]. Automation of Electric Power Systems, 2007, 31(15): 26-29. [7] 邓集祥, 涂进, 陈武晖. 大干扰下主导低频振荡模式的鉴别[J]. 电网技术, 2007, 31(7): 36-41. Deng Jixiang, Tu Jin, Chen Wuhui. Identification of critical low frequency oscillation mode in large disturbances[J]. Power System Technology, 2007, 31(7): 36-41. [8] Jun Zhe Yang, Chih Wen Liu, Wen Giang Wu. A hybrid method for the estimation of power system low-frequency oscillation parameters[J]. IEEE Transactions on Power Systems, 2007, 22(4): 2115-2123. [9] A R Messina, Vijay Vittal. Assessment of nonlinear interaction between nonlinearly coupled modes using higher order spectra[J]. IEEE Transactions on Power Systems, 2005, 20(1): 375-383. [10] Hiyama T, Suzuki N, Funakoshi T. On-line identification of power system oscillation modes by using real time FFT[C]. IEEE Power Electric Systems Winter Meeting, Singapore, 2000. [11] 邓集祥, 欧小高, 姚天亮. 基于小波能量系数的主导低频振荡模式检测[J]. 电工技术学报, 2009, 24(8): 141-146. Deng Jixiang, Ou Xiaogao, Yao Tianliang. Detection of the dominant inertial modes based on wavelet energy coefficient[J]. Transactions of China Electrotechnical Society, 2009, 24(8): 141-146. [12] Melani I. Plett. Transient detection with cross wavelet transforms and wavelet coherence[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1605-1611. [13] 李天云, 谢家安, 张方彦, 等. HHT在电力系统低频振荡模态参数提取中的应用[J]. 中国电机工程学报, 2007, 27(28): 79-83. Li Tianyun, Xie Jiaan, Zhang Fangyan, et al. Application of HHT for extracting model parameters of low frequency oscillations in power systems[J]. Proceedings of the CSEE, 2007, 27(28): 79-83. [14] 李天云, 高磊, 赵妍. 基于HHT的电力系统低频振荡分析[J]. 中国电机工程学报, 2006, 26(14): 24-30. Li Tianyun, Gao Lei, Zhao Yan. Analysis of low frequency oscillations using HHT method[J]. Proceedings of the CSEE, 2006, 26(14): 24-30. [15] 竺炜, 唐颖杰, 周有庆, 等. 基于改进Prony算法的电力系统低频振荡模式识别[J]. 电网技术, 2009, 33(5): 44-47. Zhu Wei, Tang Yingjie, Zhou Youqing, et al. Identification of power system low frequency oscillation mode based on improved Prony algorithm[J]. Power System Technology, 2009, 33(5): 44-47. [16] 李大虎, 曹一家. 基于模糊滤波和Prony算法的低频振荡模式在线辨识方法[J]. 电力系统自动化, 2007, 31(1): 14-19. Li Dahu, Cao Yijia. An online identification method for power system low-frequency oscillation based on fuzzy filtering and Prony algorithm[J]. Automation of Electric Power Systems, 2007, 31(1): 14-19. [17] Mallat S, Zhang Z. Matching pursuits with time frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. [18] Omar A Y, J Grajal, Gustavo L. Atomic decomposition for radar application[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 187-200. [19] 朱明, 普运伟, 金炜东, 等. 基于时频原子方法的雷达辐射源信号特征提取[J]. 电波科学学报, 2007, 22(3): 458-462. Zhu Ming, Pu Yunwei, Jin Weidong, et al. Feature extraction of radar emitter signals based on time- frequency atoms[J]. Chinese Journal of Radio Science, 2007, 22(3): 458-462. [20] 孙闽红, 唐斌. 基于原子分解理论的雷达欺骗式干扰信号特征提取[J]. 电波科学学报, 2008, 23(3): 550-554. Sun Minhong, Tang Bin. Feature extraction of radar deceptive-jamming signal based on atomic decomposition[J]. Chinese Journal of Radio Science, 2008, 23(3): 550-554. [21] 贾清泉, 于连富, 董海艳, 等. 应用原子分解的电能质量扰动信号特征提取方法[J]. 电力系统自动化, 2009, 33(24): 61-64. Jia Qingquan, Yu Lianfu, Dong Haiyan, et al. Power quality disturbance features extraction based on atomic decomposition[J]. Automation of Electric Power Systems, 2009, 33(24): 61-64. [22] 贾清泉, 于连富, 王宁, 等. 原子稀疏分解算法在电力系统扰动信号分析中的应用[J]. 电力系统保护与控制, 2010, 38(19): 17-21. Jia Qingquan, Yu Lianfu, Wang Ning, et al. Application of atomic sparse decomposition to power system disturbance analysis[J]. Power System Protection and Control, 2010, 38(19): 17-21. [23] Lisandro Lovisolo, Eduardo A B da Silva, Marco A M Rodrigues, et al. Efficient coherent adaptive representations of monitored electric signals in power systems using damped sinusoids[J]. IEEE Transactions on Signal Processing, 2005, 53(10): 3831-3846. [24] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [25] L Lovisolo, E A B da Silva, M A M Rodrigues, et al. Coherent decomposition of power systems signals using damped sinusoids with application to denoising[C]. Proceedings of IEEE International Symposium on Circuits and Systems, 2002, 5: 685-688. [26] K L Lo, Z J Meng. Newton-like method for line outage simulation[J]. IEE Proceedings-Generation, Transmission and Distribution, 2004, 151(2): 225-231. [27] William H Moase, Chris Manzie, Michael J Brear. Newton-like extremum-seeking for the control of thermoacoustic instability[J]. IEEE Transactions on Automatic Control, 2010, 55(9): 2094-2105. [28] 刘丁酉. 矩阵分析[M]. 武汉: 武汉大学出版社, 2003. [29] Y Wang, Y C Jiang. New time-frequency distribution based on the polynomial Wigner-Ville distribution and L class of Wigner-Ville distribution[J]. IET Signal Processing, 2010, 4(2): 130-136. [30] 邓集祥, 刘洪波. 多机电力系统非线性振荡的研究[J]. 中国电机工程学报, 2002, 22(10): 67-70. Deng Jixiang, Liu Hongbo. Study on nonlinear oscillation in multimachine power systems[J]. Proceedings of the CSEE, 2002, 22(10): 67-70. [31] 邓集祥, 纪晶, 邓斌. 基于复合模式的电力系统超低频振荡产生机理[J]. 电工技术学报, 2007, 22(8): 84-89. Deng Jixiang, Ji Jing, Deng Bin. The generation mechanism of ultra-low frequency oscillation in power systems based on combination modes[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 84-89.