Abstract:DCM Boost PFC converter features zero-current turn-on for the switch, no reverse recovery in diode and constant frequency operation, however, the input power factor(PF)is relatively low when the duty cycle is constant within one half the line cycle. This paper derives the expressions of the input current and PF of DCM Boost PFC converter, and based on which, a variable duty cycle control is proposed so as to improve the PF to nearly 1 in the whole input voltage range. A method of fitting the duty cycle is further proposed for simplifying the circuit implementation. Besides a higher PF, the proposed variable duty cycle control achieves a lower output voltage ripple and a higher efficiency over the constant duty cycle control. The experimental results from a 120W universal input prototype are given to verify the effectiveness of the proposed method.
[1] Garcia O, Cobos J A, Prieto R, et al. Power factor correction: a survey [C]. Proceedings of the IEEE Power Electronics Specialist Conference, 2001: 8-13. [2] Qiao C, Smedley K M. A topology survey of single-stage power factor corrector with Boost type input-current-shaper[J]. IEEE Transactions on Power Electronics, 2001, 16(3): 360-368. [3] Zhang J, Jovanovic M M, Lee F C. Comparison between CCM single-stage and two-stage Boost PFC converters [C]. Proceedings of the IEEE Applied Power Electronics Conference, 1999: 335-341. [4] Garcia O, Cobos J A, Alou P, et al. A new family of single-stage AC/DC power factor correction converters with fast output voltage regulation[C]. Proceedings of the IEEE Power Electronics Specialist Conference, 1997: 536-542. [5] Matsui K, Yamamoto I, Kishi T, et al. A comparison of various Buck-Boost converters and their application to PFC [C]. Proceedings of the IEEE Annual Conference of the Industrial Electronics Society, 2002: 30-36. [6] Tse C K, Chow M H L, Cheung M K H. A family of PFC voltage regulator configurations with reduced redundant power processing [J]. IEEE Transactions on Power Electronics, 2001, 16(6): 794-802. [7] Tse C K, Chow M H L. A theoretical examination of the circuit requirements of power factor correction [C]. Proceedings of the IEEE Power Electronics Specialist Conference, 1998: 1415-1421. [8] Wei H, Batarseh I. Comparison of basic converter topologies for power factor correction[C]. Proceedings of the IEEE Southeastcon, 1998: 348-353. [9] Lázaro A, Barrado A, Sanz M, et al. New power factor correction AC-DC converter with reduced storage capacitor voltage [J]. IEEE Transactions on Power Electronics, 2007, 54(1): 384-397. [10] Sharifipour B, Huang J S, Liao P, et al. Manufacturing and cost analysis of power-factor- correction circuits [C]. Proceedings of the IEEE Applied Power Electronics Conference, 1998: 490-494. [11] Lázaro A, Barrado A, Pleite J, et al. Size and cost reduction of the energy-storage capacitors [C]. Proceedings of the IEEE Applied Power Electronics Conference, 2004: 723-729. [12] Madigan M, Erickson R, Ismail E. Integrated high quality rectifier regulators[C]. Proceedings of the IEEE Power Electronics Specialist Conference, 1992: 1043-1051. [13] Zhao Q, Xu M, Lee F C, et al. Single-switch parallel power factor correction AC-DC converters with inherent load current feedback [J]. IEEE Transactions on Power Electronics, 2004, 19(4):928-935. [14] Chan C H, Pong M H. Input current analysis of interleaved Boost converters operating in discontinuous-inductor-current-mode [C]. Proceedings of the IEEE Power Electronics Specialist Conference, 1997: 392-398. [15] Gotfryd M. Output voltage and power limits in Boost power factor corrector operating in discontinuous inductor current mode [J]. IEEE Transactions on Power Electronics, 2000, 15(1): 51-57. [16] Bento A A, Da Silva E R, Jacobina C B. Improved power factor interleaved Boost converters operating in discontinuous-inductor-current mode [C]. Proceedings of the IEEE Power Electronics Specialist Conference, 2005: 2642-2647. [17] 张东升, 张东来, 王陶, 等. 三电平整流器的PFC及中点平衡控制方法[J]. 电工技术学报, 2009, 24(10): 81-86. [18] 戴栋, 张波, 李胜男, 等. 单级PFC变换器中的Hopf分岔[J]. 电工技术学报, 2008, 23(11): 65-71. [19] 林维明, 宋辉淇, Javier. 一种新型单级有源功率因数校正电路的设计分析[J]. 电工技术学报, 2005, 20(10): 60-65. [20] 马皓, 郎芸萍. 一种关于单相Boost功率因数校正器数字控制的改进算法[J]. 电工技术学报, 2006, 21(2): 83-87. [21] 李冬, 阮新波. 一种复合型单开关功率因数预调节器[J]. 中国电机工程学报, 2003, 23(8): 81-84. [22] 王鸿雁, 陈立烽, 江泓, 等. 单相多电平功率因数校正变换器应用的实验研究[J]. 中国电机工程学报, 2004, 24(11): 28-33. [23] Dixon L H High power factor pre-regulators for off-line power supplies[C].Unitrode Switching Regulator Power Supply Design Seminar Manual, 1988: 1-16. [24] Lai J S, Chen D. Design consideration for power factor correction Boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode[C]. Proceedings of the IEEE Applied Power Electronics Conference, 1993:267-273. [25] Liu K H, Lin Y L. Current waveform distortion in power factor correction circuits employing discontinuous-mode Boost converters[C]. Proceedings of the IEEE Power Electronics Specialist Conference, 1989: 825-829. [26] Schramm D S, Buss M O. Mathematical analysis of a new harmonic cancellation technique of the input line current in DICM Boost converters[C]. Proceedings of the IEEE Power Electronics Specialist Conference, 1998: 1337-1343.