Abstract:In this paper, an analytical method of the Time-Frequency characteristics of horizontal electrode under lightning strike is presented based on EMTP, a transmission line model of horizontal electrode with the consideration of soil ionization is designed. It is easy to analysis the time-domain characteristic of horizontal electrode by using this model. Moreover, the impulse current and voltage are transformed by FFT analysis, then, the frequency impedance and effective length of horizontal electrode can be calculated, furthermore , the relationship of the magnitude and rise time of lightning with the frequency impedance can be gained.
杨琳, 吴广宁, 田晓菲. 基于EMTP的水平接地体冲击时-频特性分析[J]. 电工技术学报, 2011, 26(6): 194-198.
(1. Southwest Jiaotong University, Chengdu610031China2. Sichuan Electric Power Logistics Group Corporation, Chengdu610041China). Analysis of Impulse Characteristic Grounding Electrode in Frequency and Time Domain Based on EMTP Yang Lin1 Wu Guangning1 Tian Xiaofei2. Transactions of China Electrotechnical Society, 2011, 26(6): 194-198.
[1] 夏长征, 陈慈萱, 文习山, 等. 伸长接地体冲击接地电阻计算[J]. 高电压技术, 2001, 27(5):59-63. Xia Changzheng, Chen Cixuan, Wen Xishan, et al. Computation of impulse grounding resistance of extended grounding electrode[J]. High Voltage Engineering, 2001, 27(5):59-63. [2] He Jinliang, Gao Yanqing, Zeng Rong, et al. Effective length of counterpoise wire under lightning current[J]. IEEE Transactions on Power Delivery, 2005, 20(2):1585-1591. [3] Zeng Rong, Gong Xuehai, He Jinliang, et al. Lightning impulse performances of grounding grids for substations considering soil ionization[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 667- 674. [4] Frank E Menter, Leonid Grcev. EMTP-based model for grounding system analysis[J]. IEEE Transactions on Power Delivery, 1994, 9(4): 1838-1849. [5] Liu Yaqing, Nelson Theethayi, Rajeev Thottappillil. An engineering model for transient analysis of grounding system under lightning strikes: non-uniform transmission-line approach[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 722-730. [6] Masanobu Tsumura, Yoshihiro Baba, Naoto Nagaoka. FDTD simulation of a horizontal grounding electrode and modeling of its equivalent circuit[J]. IEEE Transactions on Electromagnetic Compatibility, 2006, 48(4): 817-824. [7] Mousa A M. The soil ionization gradient associated with discharge of high currents into concentrated electrodes[J]. IEEE Transactions Power Delivery, 1994, 9(3): 1669-1677. [8] Tu Youping, He Jinliang, Zeng Rong. Lightning impulse performances of grounding devices covered with low-resistivity materials[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1706-1712. [9] Silverio Visacro. A comprehensive approach to the grounding response to lightning currents[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 381- 386. [10] 夏长征, 陈慈萱. 单位长度伸长接地体冲击特性的真型试验[J]. 高电压技术, 2001, 27(3): 34-35. Xia Changzheng, Chen Cixuan. Impulse experiment for real extended grounding electrode in unit length[J]. High Voltage Engineering, 2001, 27(3): 34-35. [11] 张宝平, 何金良, 康鹏, 等. 冻土冲击特性的试验研究[J]. 中国电机工程学报, 2008, 28(16): 143-147 Zhang Baoping, He Jinliang, Kang Peng, et al. Experimental study on impulse characteristics of frozen soil[J]. Proceedings of the CSEE, 2008, 28(16): 143-147. [12] Stojkovic Z, Savic M S, Nahman J M. Sensitivity analysis of experimentally determined grounding grid impulse characteristics[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1136-1142. [13] 杨琳, 李建明. 冲击接地电阻测量装置的研制[J]. 电力系统自动化, 2008, 32(11): 93-96. Yang Lin, Li Jianming. Development of impulse grounding resistance measurement apparatus[J]. Automation of Electric Power Systems, 2008, 32(11): 93-96.