A Modify Double Exponential Base-current and Its Application in Evaluating the Lightning EM Fields
Zhang Yan1, Liu Fugui1, Wang Youhua1, Wang Chuanchuan2, Liu Rongmei1
1. Province Ministry Joint Key Lab of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin 300130 China
2. Ordnance Engineering College Shijiazhuang 050003 China
In IEC62305, GB50057—2010 and MIL—STD—464 double exponential current waveform has been defined as standard base-current waveform, it is noteworthy to develop a solution for the electromagnetic fields which utilizes this waveform. In order to facilitate the integration required for deriving the field, Taylor series expansion will be used for all variable dependent exponential terms within the current waveform. This methodology greatly simplifies the integration required to solve for the electromagnetic fields in an approximated closed form. However, by utilizing Taylor series to approximate the variable dependent exponentials, the electromagnetic fields' accuracy becomes a function of the number of terms used. Consequently, a correction factor will have to be added in order to reshape the electromagnetic fields which results from the modified base-current waveform.
张岩, 刘福贵, 汪友华, 王川川, 刘荣美. 改进的双指数函数雷电流波形及其辐射电磁场的计算[J]. 电工技术学报, 2013, 28(2增): 133-139.
Zhang Yan, Liu Fugui, Wang Youhua, Wang Chuanchuan, Liu Rongmei. A Modify Double Exponential Base-current and Its Application in Evaluating the Lightning EM Fields. Transactions of China Electrotechnical Society, 2013, 28(2增): 133-139.
[1] 周璧华, 陈彬, 石立华. 电磁脉冲及其工程防护[M] 北京; 国防工业出版社, 2003. [2] 陈亚洲, 刘尚合. 雷电电磁场的空间分布[J]. 高电压技术, 2003, 29(1): 1-5. Chen Yazhou, Liu Shanghe. Distributing of lightning electromagnetic pulse[J]. High Voltage Engineering,2003, 29(1): 1-5. [3] Rubinstein M, Uman M A. Transient electric and magnetic fields associated with establishing a finite electrostatic dipole, revisited[J]. IEEE Trans. on EMC, 1991, 33(4): 312-320. [4] Uman M A. Lightning return stroke and magnetic fields[J]. J. Grophys. Res., 1985, 90(D4): 6121-6130. [5] Cooray V. A model for subsequent return strokes[J]. J. Electrostatics, 1993, 30: 343-354. [6] Rubinstein M, Uman M A. Methods for calculating the electromagnetic fields from a known source distribution: application to lightning[J], IEEE Trans. on EMC, 1989, 31(2): 183-189. [7] Safaeinili A, Mina M. On the analytical equivalence of electromagnetic fields solutions from a known source distribution[J], IEEE Trans. on EMC, 1991, 33(1): 69-71. [8] Thottappillil R, Rakov V A, On different approaches to calculating lightning electric fields[J], J. Geophys. Res. 2001, 106: 14191-14205. [9] Rakov V A, Uman M A. Review and evaluation of lightning return stroke models including some aspects of their application[J]. IEEE Trans on EMC, 1998, 40(4): 403- 426. [10] Bruce C E R, Golde R H. The lightning discharge[J]. IEE, London, 1941, 88: 487-520. [11] Uman M A, McLain D K. Magnetic field of lightning return stroke[J]. Journal of Geophysical Research, 1969, 74: 6899- 6910. [12] Nucci C A, Mazzetti C, Rachidi F, et al. On lightning return stroke models for LEMP calculations[C]. 19th Int Conf Lightning Protection, Graz, Austria, 1988. [13] Rakov V A, Dulzon A A. Calculated electromagnetic fields of lightning return stroke[J]. Tekh. Elektrodinam., 1987(1): 87-89. [14] Diendorfer G, Uman M A. An improved return stroke model with specified channel base current[J]. Geophys. Res., 1990, 95: 13621-13644. [15] Heidler F. Traveling current source model for LEMP calculation[C]. Proc. 6th Int. Zurich Symp. Tech. Exhib. Electromagn. Compat, Zurich, 1985: 157-162. [16] 侯民胜, 贾宏亮HEMP和 LEMP的实验室产生方法[J]. 电工技术学报. 2007, 22(11): 12-16. Hou Minsheng, Jia Hongliang. HEMP and LEMP Created in Laboratory[J]. Transactions of China Electrotechnical Society, 2007, 22(11): 12-16.