|
|
A Highly Reliable Power Allocation Technology for the Fuel Cell-Battery-Supercapacitor Hybrid Power Supply System of a More Electric Aircraft |
Song Qingchao1, Chen Jiawei1,2, Cai Kuncheng1, Chen Jie3 |
1. School of Automation Chongqing University Chongqing 400044 China; 2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 3. Department of Electrical Engineering College of Automation Nanjing University of Aeronautics and Astronautics Nanjing 211106 China |
|
|
Abstract As a key index to evaluate the performance of power system of more electric aircraft (MEA), power supply reliability is closely related to flight safety. The power allocation methods of fuel cell-battery-supercapacitor hybrid power supply system for MEA have disadvantages of relatively high cost, low reliability and poor flexibility. Therefore, this paper proposes a highly reliable decentralized dynamic power allocation strategy based on the modified mixed droop control method. It can simultaneously achieve the optimized load power allocation among power supply units, state-of-charge regulation of energy storage units and regenerative energy recycling. If one power supply unit is disconnected from the system due to malfunction, the proposed strategy can still realize dynamic power allocation among other power supply units to ensure the normal power supply of critical loads. Experiments verify the effectiveness and feasibility of the proposed strategy.
|
Received: 15 March 2021
|
|
|
|
|
[1] Wheeler P, Bozhko S.The more electric aircraft: technology and challenges[J]. IEEE Electrification Magazine, 2014, 2(4): 6-12. [2] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 51-67. Kong Xianghao, Zhang Zhuoran, Lu Jiawei, et al.Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 51-67. [3] Whyatt G A, Chick L A.Electrical generation for more-electric aircraft using solid oxide fuel cells[R]. Washington DC: US Department of Energy, 2012. [4] Motapon S N, Dessaint L, Al-Haddad K.A com- parative study of energy management schemes for a fuel-cell hybrid emergency power system of more- electric aircraft[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1320-1334. [5] Chen Jiawei, Song Qingchao.A decentralized dynamic load power allocation strategy for fuel cell/supercapacitor- based APU of large more electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 865-875. [6] Chen Jiawei, Song Qinghcao.A decentralized energy management strategy for a fuel cell/supercapacitor- based auxiliary power unit of a more electric air- craft[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5736-5747. [7] 金科, 阮新波, 杨孟雄, 等. 复合式燃料电池供电系统[J]. 电工技术学报, 2008, 23(3): 92-98. Jin Ke, Ruan Xinbo, Yang Mengxiong, et al.Hybrid fuel cell power system[J]. Transactions of China Electrotechnical Society, 2008, 23(3): 92-98. [8] 陈维荣, 朱亚男, 李奇, 等. 轨道交通用多堆燃料电池发电系统拓扑及系统控制与检测方法综述及展望[J]. 中国电机工程学报, 2018, 38(23): 6967-6980. Chen Weirong, Zhu Yanan, Li Qi, et al.Review and prospect of structures, control and detection schemes of multi-stack fuel cell power generation system used in rail traffic[J]. Proceedings of the CSEE, 2018, 38(23): 6967-6980. [9] Sulaiman N, Hannan M A, Mohamed A, et al.A review on energy management system for fuel cell hybrid electric vehicle: issues and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 802-814. [10] 雷涛, 闵志豪, 付红杰, 等. 燃料电池无人机混合电源动态平衡能量管理策略[J]. 航空学报, 2020, 41(12): 293-307. Lei Tao, Min Zhihao, Fu Hongjie, et al.Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 293-307. [11] 王玙, 杨中平, 李峰, 等. 有轨电车混合动力系统能量交互型管理策略与容量配置协同优化研究[J]. 电工技术学报, 2019, 34(8): 1780-1788. Wang Yu, Yang Zhongping, Li Feng, et al.Energy management strategy with energy interaction and configuration optimization for the tram's hybrid storage system[J]. Transactions of China Electro- technical Society, 2019, 34(8): 1780-1788. [12] 陈亚爱, 林演康, 王赛, 等. 基于滤波分配法的混合储能优化控制策略[J]. 电工技术学报, 2020, 35(19): 4009-4018. Chen Yaai, Lin Yankang, Wang Sai, et al.Optimal control strategy of hybrid energy storage based on filter allocation method[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4009-4018. [13] 高锋阳, 张浩然, 王文祥, 等. 氢燃料电池有轨电车混合储能系统的节能运行优化[J/OL]. 电工技术学报, 2021, https://doi.org/10.19595/j.cnki.1000-6753. tces.201645. Gao Fengyang, Zhang Haoran, Wang Wenxiang, et al. Energy saving operation optimization of hybrid energy storage system for hydrogen fuel cell tram[J/OL]. Transactions of China Electrotechnical Society, 2021, https://doi.org/10.19595/j.cnki.1000-6753.tces.201645. [14] Snoussi J, Elghali S B, Benbouzid M, et al.Optimal sizing of energy storage systems using frequency- separation-based energy management for fuel cell hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9337-9346. [15] 周美兰, 冯继峰, 张宇, 等. 纯电动客车复合储能系统功率分配控制策略研究[J]. 电工技术学报, 2019, 34(23): 5001-5013. Zhou Meilan, Feng Jifeng, Zhang Yu, et al.Research on power allocation control strategy for compound electric energy storage system of pure electric bus[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 5001-5013. [16] Abkenar T A, Nazari A, Jayasinghe S D G, et al. Fuel cell power management using genetic expression programming in all-electric ships[J]. IEEE Transa- ctions on Energy Conversion, 2017, 32(2): 779-787. [17] 郭伟, 赵洪山. 基于事件触发机制的直流微电网多混合储能系统分层协调控制方法[J]. 电工技术学报, 2020, 35(5): 1140-1151. Guo Wei, Zhao Hongshan.Coordinated control method of multiple hybrid energy storage system in DC microgrid based on event-triggered mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1140-1151. [18] 刘忠, 杨陈, 蒋玮, 等. 基于一致性算法的直流微电网储能系统功率分配技术[J]. 电力系统自动化, 2020, 44(7): 61-69. Liu Zhong, Yang Chen, Jiang Wei, et al.Consensus algorithm based power distribution technology for energy storage system in DC microgrid[J]. Automation of Electric Power Systems, 2020, 44(7): 61-69. [19] 张伟亮, 张辉, 支娜, 等. 考虑网络损耗的基于模型预测直流微电网群能量优化策略[J/OL]. 电力系统自动化, 2021, http://kns.cnki.net/kcms/detail/32.1180. TP.20210416.1104.006.html. Zhang Weiliang, Zhang Hui, Zhi Na, et al. Model prediction based energy optimization strategy for DC microgrid groups considering network loss[J/OL]. Automation of Electric Power Systems, 2021, http:// kns.cnki.net/kcms/detail/32.1180.TP.20210416.1104.006.html. [20] Azib T, Bethoux O, Remy G, et al.An innovative control strategy of a single converter for hybrid fuel cell/supercapacitor power source[J]. IEEE Transa- ctions on Industrial Electronics, 2010, 57(12): 4024-4031. [21] Turpin C, Morin B, Bru E, et al.Power for aircraft emergencies: a hybrid proton-exchange membrane H2/O2 fuel cell and ultracapacitor system[J]. IEEE Electrification Magazine, 2017, 5(4): 72-85. [22] Gu Yunjie, Li Wuhua, He Xiangning.Frequency- coordinating virtual impedance for autonomous power management of DC microgrid[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 2328-2337. [23] Zhao Xin, Li Yunwei, Tian Hao, et al.Energy management strategy of multiple supercapacitors in a DC microgrid using adaptive virtual impedance[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(4): 1174-1185. [24] Zhang Yuru, Li Yunwei.Energy management strategy for supercapacitor in droop-controlled DC microgrid using virtual impedance[J]. IEEE Transactions on Power Electronics, 2017, 32(4): 2704-2716. [25] 杨捷, 金新民, 吴学智, 等. 直流微网中混合储能系统的无互联通信网络功率分配策略[J]. 电工技术学报, 2017, 32(10): 135-144. Yang Jie, Jin Xinmin, Wu Xuezhi, et al.A wireless power sharing control strategy for hybrid energy storage systems in DC microgrids[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 135-144. [26] Xu Qianwen, Hu Xiaolei, Wang Peng, et al.A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous DC microgrid[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5930-5941. [27] Xu Qianwen, Zhang Chuanlin, Xu Zhao, et al.A composite finite-time controller for decentralized power sharing and stabilization of hybrid fuel cell/ supercapacitor system with constant power load[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1388-1400. [28] Xu Qianwen, Xiao Jianfang, Hu Xiaolei, et al.A decentralized power management strategy for hybrid energy storage system with autonomous bus voltage restoration and state-of-charge recovery[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7098-7108. [29] Chen Jie, Song Qingchao, Yin Sihao, et al.On the decentralized energy management strategy for the all-electric APU of future more electric aircraft composed of multiple fuel cells and supercapa- citors[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6183-6194. [30] Song Qingchao, Wang Lei, Chen Jiawei.A decentra- lized energy management strategy for a fuel cell- battery hybrid electric vehicle based on composite control[J]. IEEE Transactions on Industrial Elec- tronics, 2021, 68(7): 5486-5496. [31] Rausand M, Hoyland A.System reliability theory: models, statistical methods, and applications[M]. Hoboken: Willey, 2004. [32] Soon J L, Lu D D, Peng J C, et al.Reconfigurable nonisolated DC-DC converter with fault-tolerant capability[J]. IEEE Transactions on Power Elec- tronics, 2020, 35(9): 8934-8943. |
|
|
|