|
|
A Method of Regression Modeling for Rail Potential Evaluation |
Zhang Zheng, Yang Shaobing, Wu Mingli, Ye Jingjing |
School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China |
|
|
Abstract Rail potential is one of the safety operation indexes of metro. The evaluation of rail potential level has always been a difficult problem in calculation of power supply simulation. There exists a large error when apply the traditional algorithm in power supply simulation quantitatively. Therefore, it cannot be applied to the actual train timetable. Firstly, this paper established the equivalent diagram model for rail reflux system; then through analyzing the characteristics of power supply system, the mathematical model of rail potential was divided into constant parameters and variable factors, and furthermore the relation between rail potential and variable factors was given. Based on the relation, the feasibility and applicability of regression modeling for rail potential was analyzed. The regression model of rail potential of substation was established with actual measured data and BP neural network algorithm. The result shows that error of model meets the needs of practical engineering. In addition, a practical application example of the model in operation scenario is given, which shows that the model can be well embedded in current system of power supply simulation system.
|
Received: 28 February 2020
|
|
|
|
|
[1] Tzeng Y S, Lee C H.Analysis of rail potential and stray currents in a direct-current transit system[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1516-1525. [2] 王慧康, 杨晓峰, 倪梦涵, 等. 轨道电位与杂散电流动模实验平台[J]. 电工技术学报, 2020, 35(17): 3609-3618. Wang Huikang, Yang Xiaofeng, Ni Menghan, et al.Rail potential and stray current dynamic emulator[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3609-3618. [3] 高圣夫, 刘炜, 郑杰, 等. 直流牵引供电系统钢轨电位限值问题及其治理方案[J]. 城市轨道交通研究, 2017, 20(8): 59-63. Gao Shengfu, Liu Wei, Zheng Jie, et al.Rail over- oltage protection in DC traction power supply system research and solutions[J]. Urban Mass Transit, 2017, 20(8): 59-63. [4] 杨晓峰, 薛皓, 郑琼林. 基于双向可变电阻模块的杂散电流与轨道电位动态模拟系统[J]. 电工技术学报, 2019, 34(13): 2793-2805. Yang Xiaofeng, Xue Hao, Zheng Qionglin.Stray current and rail potential dynamic simulation system based on bidirectional variable resistance module[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2793-2805. [5] 杜贵府, 张栋梁, 王崇林, 等. 直流牵引供电系统电流跨区间传输对钢轨电位影响[J]. 电工技术学报, 2016, 31(11): 129-139. Du Guifu, Zhang Dongliang, Wang Chonglin, et al.Effect of traction current transmission among power sections on rail potential in DC mass transit system[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 129-139. [6] 刘炜, 娄颖, 张戬, 等. 计及城市轨道逆变回馈装置的交直流统一供电计算[J]. 电工技术学报, 2019, 34(20): 4381-4391. Liu Wei, Lou Ying, Zhang Jian, et al.Unified AC/DC power supply calculation taking into account urban rail inverter feedback devices[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4381-4391. [7] 刘炜, 吴拓剑, 禹皓元, 等. 直流牵引供电系统地面储能装置建模与仿真分析[J]. 电工技术学报, 2020, 35(19): 4207-4215. Liu Wei, Wu Tuojian, Yu Haoyuan, et al.Modeling and simulation of way-side energy storage devices in DC traction power supply system[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4207-4215. [8] 王禹桥, 李威, 杨雪锋, 等. 对地铁轨道电位异常升高的研究[J]. 城市轨道交通研究, 2009, 12(8): 35-37. Wang Yuqiao, Li Wei, Yang Xuefeng, et al.Study on rail potential anomalies[J]. Urban Mass Transit, 2009, 12(8): 35-37. [9] 周大林, 庞开阳, 李鲲鹏. 地铁直流牵引供电系统钢轨运行电位安全分析[J]. 城市轨道交通研究, 2015, 18(6): 46-48. Zhou Dalin, Pang Kaiyang, Li Kunpeng.Analysis of rail potential safety operation of DC traction power supply system[J]. Urban Mass Transit, 2015, 18(6): 46-48. [10] 梅进武. 地铁杂散电流分布研究[D]. 成都: 西南交通大学, 2017. [11] 闫明富, 李夏青, 王奎鹃. 地铁钢轨电位和杂散电流分布研究及仿真[J]. 北京石油化工学院学报, 2013, 21(1): 37-41. Yan Mingfu, Li Xiaqing, Wang Kuijuan.Research and simulation of metro rail potential and stray current distribution[J]. Journal of Beijing Institute of Petrochemical Technology, 2013, 21(1): 37-41. [12] 李鲲鹏, 刘炜, 李群湛, 等. 直流牵引回流系统钢轨电位的理论分析[J]. 都市快轨交通, 2015, 28(5): 91-94. Li Kunpeng, Liu Wei, Li Qunzhan, et al.Theoretical analysis of rail potential in DC traction return system[J]. Urban Rapid Rail Transit, 2015, 28(5): 91-94. [13] 浦雨婷, 杨洪耕, 马晓阳. 基于数据挖掘与改进灰靶的电压暂降严重度分析与评估[J]. 电力系统自动化, 2020, 44(2): 198-206. Pu Yuting, Yang Honggeng, Ma Xiaoyang.Analysis and evaluation of voltage sag severity based on data mining and improved grey target theory[J]. Auto- mation of Electric Power Systems, 2020, 44(2): 198-206. [14] 申宁, 李群湛, 刘炜. 不均匀过渡电阻下地铁杂散电流分析[J]. 都市快轨交通, 2010, 23(6): 98-100, 104. Shen Ning, Li Qunzhan, Liu Wei.Analysis of stray current under non-uniform transition resistance in subway[J]. Urban Rapid Rail Transit, 2010, 23(6): 98-100, 104. [15] 朱峰, 李嘉成, 曾海波, 等. 城市轨道交通轨地过渡电阻对杂散电流分布特性的影响[J]. 高电压技术, 2018, 44(8): 2738-2745. Zhu Feng, Li Jiacheng, Zeng Haibo, et al.Influence of rail-to-ground resistance of urban transit system on distribution characteristics of stray current[J]. High Voltage Engineering, 2018, 44(8): 2738-2745. [16] 何涛, 李培强, 王璜, 等. 地铁牵引回流系统的钢轨电位和杂散电流仿真[J]. 福建工程学院学报, 2017, 15(4): 386-392. He Tao, Li Peiqiang, Wang Huang, et al.Simulation of rail potential and stray current in metro traction return system[J]. Journal of Fujian University of Technology, 2017, 15(4): 386-392. [17] Christer T.Applied regression analysis[M]. London: Taylor and Francis, 2019. [18] Zhang Zhu, Rao Shenghua, Zhang Xiaopeng.Perfor- mance prediction of switched reluctance motor using improved generalized regression neural networks for design optimization[J]. CES Transactions on Elec- trical Machines and Systems, 2018, 2(4): 371-376. [19] 范伟, 林瑜阳, 李钟慎. 遗传算法优化的BP神经网络压电陶瓷蠕变预测[J]. 电机与控制学报, 2018, 22(7): 91-96. Fan Wei, Lin Yuyang, Li Zhongshen.Prediction model of the creep of piezoceramic based on BP neural network optimized by genetic algorithm[J]. Electric Machines and Control, 2018, 22(7): 91-96. [20] Kingma D P, Ba J L.Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations, San Diego, 2015: 1-15. [21] 中华人民共和国住房和城乡建设部. 地铁设计规范: GB 50157-2013[S]. 北京: 中国建筑工业出版社, 2013. |
|
|
|