|
|
Stability Analysis of High-Performance Nb3Sn CICC Conductor in China Fusion Engineering Testing Reactor Toroidal Field Superconducting Magnets |
Zhang Zhengshuo1, 2, Zheng Jinxing1, Song Yuntao1, Liu Xufeng1, Lu Kun1 |
1. Institute of Plasma Physics Chinese Academy of Science Hefei 230031 China; 2. University of Science and Technology of China Hefei 230026 China |
|
|
Abstract In order to obtain the high-parameter confined plasma in China fusion engineering testing reactor (CFETR), the hybrid magnets of CFETR toroidal field (TF) magnetic system is to use three kinds of superconductors with different properties. The peak magnetic field can reach 14.43T and the maximum stress exceeds 700MPa. In this paper, the temperature margin and energy margin of the high-performance Nb3Sn pancake coils of hybrid magnets are analyzed under different perturbation lengths and durations based on steady-state and transient thermal load conditions of CFETR TF magnets. The results show that the high-performance Nb3Sn CICC conductors have a temperature margin of 2.0K and above under the peak field and -0.7% - -0.5% effective strain. However, the energy margin for electromagnetic disturbance (Lp=10m, tp=100ms) under extreme conditions (B=14.43T, ε =-0.7%) is only 11.41mJ/cc. The decline of energy margin under severe local conditions is a serious problem. The quench caused by typical mechanical perturbation (Lp=0.1m, tp=1ms) can raise the hot spot temperature of the conductor to above 100K within 5 seconds, which puts forward a high demand on the magnet quench protection system.
|
Received: 22 October 2019
|
|
|
|
|
[1] Wesche R, Sarasola X, Sedlak K, et al.DEMO central solenoid design based on the use of HTS sections at highest magnetic field[J]. IEEE Transa- ctions on Applied Superconductivity, 2018, 28(3): 1-5. [2] Maksoud W A, Genini L, Ciazynski D, et al.Progress of the JT-60 SA toroidal field coils tests in the cold test facility[J]. IEEE Transactions on Applied Super- conductivity, 2018, 28(3): 1-4. [3] 张立晖, 石晶, 严思念, 等. 磁通约束型超导限流开关系统应用[J]. 电工技术学报, 2018, 33(22): 152-159. Zhang Lihui, Shi Jing, Yan Sinian, et al.System application of flux-coupling superconducting fault current limiting switch[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 152-159. [4] 刘晟源, 林振智, 李金城, 等. 电力系统态势感知技术研究综述与展望[J]. 电力系统自动化, 2020, 44(3): 229-239. Liu Shengyuan, Lin Zhenzhi, Li Jincheng, et al.Review and prospect of situation awareness techno- logies of power system[J]. Automation of Electric Power Systems, 2020, 44(3): 229-239. [5] 李万杰, 张国民, 王新文, 等. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报, 2020, 35(增刊1): 10-18. Li Wanjie, Zhang Guomin, Wang Xinwen, et al.Integration design of high-temperature supercon- ducting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 10-18. [6] 许周, 孙永辉, 谢东亮, 等. 计及电/热柔性负荷的区域综合能源系统储能优化配置[J]. 电力系统自动化, 2020, 44(2): 53-63. Xu Zhou, Sun Yonghui, Xie Dongliang, et al.Optimal configuration of energy storage for integr- ated region energy system considering power/thermal flexible load[J]. Automation of Electric Power Systems, 2020, 44(2): 53-63. [7] Zheng Jinxing, Song Yuntao, Liu Xufeng, et al.Overview of the design status of superconducting magnet system of CFETR[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5. [8] Yun Taosong, Song Taowu, Jian Gangli, et al.Concept design of CFETR tokamak machine[J]. IEEE Transa- ctions on Plasma Science, 2014, 42(3): 503-509. [9] Bessette D, Zapretilina E, Shatil N.Nuclear heat, disruption loads and other AC losses and their impact on the ITER toroidal field coils conductor design[J]. IEEE Transactions on Appiled Superconductivity, 2000, 10(1): 1074-1077. [10] Bonifetto R, Buonora F, Richard L S, et al.4C code simulation and benchmark of ITER TF magnet cool-down from 300K to 80K[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4902604. [11] Nijhuis A, Lanen E P A V, Rolando G. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction[J]. Superconductor Science & Technology, 2012, 25(1): 24. [12] 滕玉平, 戴少涛, 魏周荣, 等. ITER装置超导磁体线圈导体用超导电缆的绞制[J]. 电工技术学报, 2013, 28(4): 7-12. Teng Yuping, Dai Shaotao, Wei Zhourong, et al.Cabling for the superconducting cable of magnet coils for ITER[J]. Transactions of China Electro- technical Society, 2013, 28(4): 7-12. [13] Kessel C E, Blanchard J P, Davis A, et al.Overview of the fusion nuclear science facility, a credible break-in step on the path to fusion energy[J]. Fusion Engineering and Design, 2018, 135: 236-270. [14] Liu Xufeng, Zheng Jinxing, Wu Huan, et al.Con- ceptual design and analysis of CFETR TF coil[J]. Journal of Fusion Energy, 2015, 34(5): 1027-1032. [15] Bagni T, Duchateau J L, Breschi M, et al.Analysis of ITER NbTi and Nb3Sn CICCs experimental minimum quench energy with JackPot, MCM and THEA models[J]. Superconductor Science and Technology, 2017, 30(9): 095003. [16] Sedlak K, Bruzzone P.Results and analysis of the hot-spot temperature experiment for a cable-in- conduit conductor with thick conduit[J]. Cryogenics, 2015, 72: 9-13. [17] Bermudez S I, Bajas H, Bottura L.Quench modeling in high-field Nb3Sn accelerator magnets[J]. Physics Procedia, 2015, 67: 840-846. [18] 何欣, 郑金星, 宋云涛, 等. CFETR极向场磁体CICC导体稳定性与交流损耗分析[J]. 电工技术学报, 2016, 31(19): 224-231. He Xin, Zheng Jinxing, Song Yuntao, et al.Stability and AC loss analysis of the CICC for CFETR poloidal field coils[J]. Transactions of China Electro- technical Society, 2016, 31(19): 224-231. [19] Devred A.ITER Nb3Sn critical surface parameteri- zation[R]. ITER Organization: Cadarache, 2008. [20] 彭楠. ITER纵向场超导磁体系统降温过程热力学分析[D]. 北京: 中国科学院研究生院(理化技术研究所), 2009. [21] Zanino R, Giors S, Richard L S.CFD model of ITER CICC. part VI: heat and mass transfer between cable region and central channel[J]. Cryogenics, 2010, 50(3): 158-166. [22] 蒋华伟, 李国平, 赵玉娟, 等. 基于稳定性CICC设计模型[J]. 电工技术学报, 2011, 26(1): 14-26. Jiang Huawei, Li Guoping, Zhao Yujuan, et al.Model to design for CICC based on stability[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 14-26. [23] Jiang Huawei, Wu Songtao.Research of simulation design for CICC based on energy margin and temperature margin[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1436-1439. [24] Bruzzone P, Fuchs A, Stepanov B, et al.Transient stability results for Nb3Sn cable-in-conduit con- ductors[J]. IEEE Transactions on Applied Super- conductivity, 2002, 12(1): 512-515. |
|
|
|