|
|
Expected Electrical Life Prediction of AC Contactor Based on Rough Set and Evidence Theory |
Sun Shuguang1, Wang Ruixiong1, Du Taihang1, Wang Jingqin2, Cui Jingrui1 |
1. School of Artificial Intelligence Hebei University of Technology Tianjin 300130 China; 2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China |
|
|
Abstract At present, the research on the electrical life prediction of low-voltage electrical apparatus mostly focuses on the residual electrical life prediction. However, predicting the expected electrical life is more effective in guiding the use and maintenance of products and improving the reliability of the system during service period. AC contactor's initial state characteristics can reflect the length of the individual's electrical life to a certain extent, so a method for predicting the expected electrical life of AC contactor based on rough set and evidence theory was proposed. Firstly, the rough set theory and corresponding calculation were used to obtain the key initial state characteristics through twice screening. Secondly, the weight set of key initial state characteristics was established by subjective and objective comprehensive weighting method and the matching degree table of verification sample's key initial state characteristics was established based on the attribute condition density. Finally, the independent evidence was constructed by the matching degree table and weight set, then evidence theory was used to fuse evidences and decide the individual's expected electrical life grade of verification sample. The measured data proves that in the case of small samples, the method can qualitatively evaluate the expected electrical life of the AC contactor and the prediction effect is good.
|
Received: 23 May 2019
|
|
Fund:河北省教育厅资助科研项目资助(ZD2016108) |
|
|
|
[1] 李奎, 李晓倍, 郑淑梅, 等. 基于BP神经网络的交流接触器剩余电寿命预测[J]. 电工技术学报, 2017, 32(15): 120-127. Li Kui, Li Xiaobei, Zheng Shumei, et al.Residual electrical life prediction for AC contactor based on BP neural network[J]. Transactions of China Electro- technical Society, 2017, 32(15): 120-127. [2] 李奎, 段宇, 黄少坡, 等. 基于Wiener过程的交流接触器剩余电寿命预测[J]. 中国电机工程学报, 2018, 38(13): 3978-3986, 4039. Li Kui, Duan Yu, Huang Shaopo, et al.Residual electrical life prediction of AC contactor based on the wiener process[J]. Proceedings of the CSEE, 2018, 38(13): 3978-3986, 4039. [3] 李志刚, 刘伯颖, 李玲玲, 等. 基于小波包变换及RBF神经网络的继电器寿命预测[J]. 电工技术学报, 2015, 30(14): 233-240. Li Zhigang, Liu Boying, Li Lingling, et al.Life prediction of relay based on wavelet packet transform and RBF neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 233-240. [4] 刘建强, 陈爱峰, 闫一凡, 等. 高速列车电磁接触器可靠性评估方法[J]. 电工技术学报, 2018, 33(增刊2): 461-471. Liu Jianqiang, Chen Aifeng, Yan Yifan, et al.Reliability evaluation method of electromagnetic contactor used in high-speed train[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 461-471. [5] Zheng Shumei, Niu Feng, Li Kui, et al.Analysis of electrical life distribution characteristics of AC contactor based on performance degradation[J]. IEEE Transactions on Components Packaging and Manufa- cturing Technology, 2018, 8(9): 1604-1613. [6] 李华, 孙东旺, 贺鹏举, 等. 基于超程时间回归模型的继电器寿命预测方法[J]. 电工技术学报, 2013, 28(增刊2): 414-417, 423. Li Hua, Sun Dongwang, He Pengju, et al.The method of relay life prediction based on the regression model of super-path time[J]. Transactions of China Electro- technical Society, 2013, 28(S2): 414-417, 423. [7] 孙永奎, 张玉琢, 徐超凡, 等. 安全型继电器失效机理判别与寿命预测[J]. 交通运输工程学报, 2018, 18(3): 138-147. Sun Yongkui, Zhang Yuzhuo, Xu Chaofan, et al.Failure mechanisms discrimination and life predi- ction of safety relay[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 138-147. [8] Cui Xinglei, Zhou Xue, Zhai Guofu, et al.Electrical lifespan prediction of HVDC relay based on the accumulated arc erosion mass[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(3): 356-363. [9] 李志刚, 张菲菲, 李玲玲. 基于元器件初始信息的寿命评估方法[J]. 机械工程学报, 2014, 50(16): 41-46. Li Zhigang, Zhang Feifei, Li Lingling.Lifetime evaluation approach based on initial information of components[J]. Journal of Mechanical Engineering, 2014, 50(16): 41-46. [10] 李玲玲, 张士暖, 李志刚, 等. 基于粗糙集理论和生命初态信息的继电器寿命预测方法[J]. 电工技术学报, 2016, 31(18): 46-53. Li Lingling, Zhang Shinuan, Li Zhigang, et al.The life prediction method of relay based on rough set theory and relay’s initial life information[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 46-53. [11] 林晓宁, 蔡金锭. 基于粗糙集理论的变压器油纸绝缘状态评估[J]. 电力系统保护与控制, 2019, 47(7): 22-29. Lin Xiaoning, Cai Jinding.Evaluation of transformer oil-paper insulation based on rough set theory[J]. Power System Protection and Control, 2019, 47(7): 22-29. [12] Peng Xiaosheng, Wen Jinyu, Li Zhaohui, et al.Rough set theory applied to pattern recognition of partial discharge in noise affected cable data[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1): 147-156. [13] Fetouh T, Zaky M.New approach to design svc-based stabilizer using genetic algorithm and rough set theory[J]. IET Generation, Transmission & Distri- bution, 2017, 11(2): 372-382. [14] 刘征宇, 王雪松, 汤伟, 等. 基于可信度因子推理模型的电池组均衡方法[J]. 中国机械工程, 2019, 30(9): 1090-1096. Liu Zhengyu, Wang Xuesong, Tang Wei, et al.A battery equalization strategy based on reasoning model of C-F[J]. China Mechanical Engineering, 2019, 30(9): 1090-1096. [15] Li Shaoyi, Zhang Kai, Yin Jianfei, et al.A study on IR target recognition approach in aerial jamming environment based on bayesian probabilistic model[J]. IEEE Access, 2018, 7: 50300-50316. [16] Barros D M O A, Luiz M R, Ribeiro E R. Short-circuit fault diagnosis based on the rough sets theory for a single-phase inverter[J]. IEEE Transa- ctions on Power Electronics, 2018, 34(5): 4747-4764. [17] Du Wei, ZhangChuan, Fang Ning, et al. A quantita- tive analysis of electromagnetic simulation model credibility[J]. IEEE Antennas and Wireless Pro- pagation Letters, 2019, 18(1): 34-38. [18] 刘满君, 程林, 黄道姗, 等. 基于运行可靠性理论的高可靠性供电路径搜索方法[J]. 电工技术学报, 2019, 34(14): 3004-3011. Liu Manjun, Cheng Lin, Huang Daoshan, et al.The high reliability supply path searching method based on the operational reliability theory[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3004-3011. [19] 耿俊豹, 邱玮, 孔祥纯, 等. 基于粗糙集和D-S证据理论的设备技术状态评估[J]. 系统工程与电子技术, 2008, 30(1): 112-115. Geng Junbao, Qiu Wei, Kong Xiangchun, et al.Technical condition evaluation for devices based on rough set theory and D-S evidence theory[J]. Systems Engineering and Electronics, 2008, 30(1): 112-115. [20] 孙伟超, 李文海, 李文峰. 融合粗糙集与D-S证据理论的航空装备故障诊断[J]. 北京航空航天大学学报, 2015, 41(10): 1902-1909. Sun Weichao, Li Wenhai, Li Wenfeng.Avionic devices fault diagnosis based on fusion method of rough set and D-S theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1902-1909. [21] Deval S M, Shoushun C, Soon L K.A Hamming distance and spearman-correlation based star identi- fication algorithm[J]. IEEE Transactions on Aero- space and Electronic Systems, 2018, 55(1): 17-30. [22] 江帆, 杨洪耕. 基于选择性贝叶斯分类的非侵入式负荷识别方法[J]. 电力建设, 2019, 40(2): 94-99. Jiang Fan, Yang Honggeng.Non-intrusive load identification method based on selected Bayes classifier[J]. Electric Power Construction, 2019, 40(2): 94-99. [23] 刘建强, 刘传铎, 王轶欧, 等. 单相PWM整流器IGBT及直流侧电容故障诊断方法[J]. 电工技术学报, 2019, 34(增刊1): 244-257. Liu Jianqiang, Liu Chuanduo, Wang Yiou, et al.Fault diagnosis method for IGBT and DC-link capacitor of single-phase PWM rectifier[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 244-257. [24] 鲍学英, 柴乃杰, 王起才. 基于G1法和改进DEA的铁路绿色施工节能措施综合效果研究[J]. 铁道学报, 2018, 40(10): 15-22. Bao Xueying, Chai Naijie, Wang Qicai.Com- prehensive effect of energy-saving measures on railway green construction based on G1 method and improved DEA models[J]. Journal of the China Railway Society, 2018, 40(10): 15-22. [25] 储冉, 王怀秀, 王亚慧. 基于熵权与灰关联度定权的VIKOR多准则综合评价研究[J]. 现代电子技术, 2018, 41(24): 162-166, 169. Chu Ran, Wang Huaixiu, Wang Yahui.Research on multi-criteria comprehensive evaluation based on entropy weight and grey relational legal weight for VIKOR[J]. Modern Electronics Technique, 2018, 41(24): 162-166, 169. |
|
|
|